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Introduction
Contingent claims on underlying assets are typically priced under the framework introduced by 
Black and Scholes (1973). This framework assumes, inter alia, that the log returns of an underlying 
asset are normally distributed. However, many researchers have shown that this assumption is 
violated in practice. Cont (2001) put forth several ‘stylised facts’ of empirical asset returns, defined 
as ‘statistical properties found to be common across a wide range of instruments, markets and 
time periods’. These include the properties of the so-called heavy tails, volatility clustering, 
leptokurtosis and long memory. While many authors have studied the implications of these 
stylised facts across a variety of market applications, this article addresses an issue which has 
previously not received much attention. More specifically, this article considers several theoretical 
and practical issues in the pricing of contingent claims when the underlying is assumed to display 
long memory.

Background: Contingent claims on underlying assets are typically priced under a framework 
that assumes, inter alia, that the log returns of the underlying asset are normally distributed. 
However, many researchers have shown that this assumption is violated in practice. Such 
violations include the statistical properties of heavy tails, volatility clustering, leptokurtosis 
and long memory. This paper considers the pricing of contingent claims when the underlying 
is assumed to display long memory, an issue that has heretofore not received much attention.

Aim: We address several theoretical and practical issues in option pricing and implied volatility 
calibration in a fractional Black–Scholes market. We introduce a novel eight-parameter 
fractional Black–Scholes-inspired (FBSI) model for the implied volatility surface, and consider 
in depth the issue of calibration. One of the main benefits of such a model is that it allows one 
to decompose implied volatility into an independent long-memory component – captured by 
an implied Hurst exponent – and a conditional implied volatility component. Such a 
decomposition has useful applications in the areas of derivatives trading, risk management, 
delta hedging and dynamic asset allocation.

Setting: The proposed FBSI volatility model is calibrated to South African equity index options 
data as well as South African Rand/American Dollar currency options data. However, given 
the focus on the theoretical development of the model, the results in this paper are applicable 
across all financial markets.

Methods: The FBSI model essentially combines a deterministic function form of the 1-year 
implied volatility skew with a separate deterministic function for the implied Hurst exponent, 
thus allowing one to model both observed implied volatility surfaces as well as decompose 
them into independent volatility and long-memory components respectively. Calibration of 
the model makes use of a quasi-explicit weighted least-squares optimisation routine.

Results: It is shown that a fractional Black–Scholes model always admits a non-constant 
implied volatility term structure when the Hurst exponent is not 0.5, and that 1-year implied 
volatility is independent of the Hurst exponent and equivalent to fractional volatility. 
Furthermore, we show that the FBSI model fits the equity index implied volatility data very 
well but that a more flexible Hurst exponent parameterisation is required to fit accurately the 
currency implied volatility data.

Conclusion: The FBSI model is an arbitrage-free deterministic volatility model that can 
accurately model equity index implied volatility. It also provides one with an estimate of the 
implied Hurst exponent, which could be very useful in derivatives trading and delta hedging.
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Hurst (1951) proposed a statistical metric – and its estimation 
methodology – for measuring the long-term memory 
embedded within a given system. This metric is now 
commonly referred to as the Hurst exponent, index or 
parameter and is denoted by H ∈ [0,1]. For a given time series, 
H < 1/2 implies that the series displays a negative, long-term 
autocorrelation (or anti-persistence), H = 1/2 implies zero 
long-term autocorrelation and H > 1/2 implies that the series 
displays a positive autocorrelation. In financial calculus 
parlance, this would be equivalent to a stochastic process 
displaying mean-reversion, no memory or momentum, 
respectively. A stochastic process with high H > 1/2 will also 
be smoother than the same process with low H < 1/2 because 
it is less likely to move against the underlying trend.

Mandelbrot and Van Ness (1968) were the first researchers to 
suggest the use of the Hurst exponent in financial markets. 
Specifically, they suggested that financial asset prices 
displayed some form of long memory and introduced 
fractional Brownian motion (fBm) – a new class of Gaussian 
random functions – for modelling the log increments in asset 
price processes. The fBm for a given Hurst exponent H (see, 
e.g. Biagini et al. 2008) is the continuous Gaussian process 
{BH(t), t ∈ R+}, with

( )  = 0B tH

( ) ( )  = + − −





, 1
2

.2 2 2
B t B s t s t sH H

H H H
 � [Eqn 1]

From Equation 1, it is clear that the standard Brownian 
motion is simply a special case of fBm where H = 1/2. For all 
other values of H though, the fBm process will have 
dependent increments. Mandelbrot (2013), as well as the 
references contained therein, provides an excellent summary 
of the early applications of the fBm theory in financial 
markets. A sample of the more recent studies is given below.

Karuppiah and Los (2005) consider the long-term 
dependence of Asian currencies finding empirical Hurst 
exponents between 0.3 and 0.5 and thus implying anti-
persistent behaviour. In contrast, they note that equities 
typically exhibit persistent behaviour, with Hurst exponents 
estimated between 0.6 and 0.7 (see also, e.g. Peters 1989, 
1994). Simonsen (2003) demonstrates that Nordic electricity 
spot prices can be modelled using fBm with a Hurst 
exponent of approximately 0.4. Alvarez-Ramirez et al. 
(2002) conclude that crude oil price formations are 
stochastically persistent with long-term memory processes 
at work. A long-term dependence (as well as heavy tailed 
distributions) in financial data has been established by 
Andersen and Bollerslev (1997) and Müller, Dacorogna and 
Pictet (1998) using high-frequency financial data. More 
recent work by Tzouras, Anagnostopoulos and McCoy 
(2015) employs the Hurst exponent to model memory-
dependent properties in share indices and oil prices (see 
also Alvarez-Ramirez et al. 2008; Serinaldi 2010). Cajueiro 
and Tabak (2004), as well as Rejichi and Aloui (2012), use the 
Hurst exponent to test the evolving efficiency of emerging 
equity markets.

Hu and Øksendal (2003) derived closed-form solutions for 
contingent claim valuation in a fractional Black–Scholes 
market, where the standard Brownian motion in the asset 
price process is replaced with an fBm (see also Necula 2002). 
Their work was extended by Elliott and Van der Hoek (2003). 
Specifically, for a market with a risk-free asset A and a risky 
stock S, a fractional Black–Scholes market is defined as

dA(t) = rA(t)dt, A(0) = 1; r > 0
dS(t) = μS(t)dt + σS(t)dBH(t), S(0) = s > 0; σ > 0 � [Eqn 2]

where 0 ≤ t ≤ T, r and µ are constant drift parameters and σ 
is a constant scale parameter. From this, Hu and Øksendal 
(2003) derive the fractional Black–Scholes value of a 
European call option Cf(·) at time t with strike K and term 
r = T − t as

τ σ Φ Φ) )( ()( = − τ−, , , , , ,1 2C S K r H S d K df t t
r  � [Eqn 3]

where Φ is the standard cumulative normal distribution 
function and
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As with the seminal Black–Scholes option pricing formula 
(Black & Scholes 1973), one can infer the valuation formula 
for a European put option Pf(·) with strike K and term τ via 
put-call parity. Furthermore, a dividend yield q can be 
added to the above equations in a similar manner to 
Merton’s (1973) extension of the standard Black–Scholes 
framework.

Although already stated above, Equation 3 makes it clear that 
setting H = 1/2 simply gives one the classical Black and 
Scholes (1973) option pricing formula. Therefore, assuming 
that the risk-free rate and dividend yield are known, fBm 
option prices are fully described by two parameters: the 
Hurst exponent H as a measure of long memory and the 
volatility of the stock σ after controlling for long memory.

This article is organised as follows: The section ‘Implied 
volatility in a fractional Black–Scholes market’ is devoted to 
the links between standard Black–Scholes (1973) volatility 
and fractional Black–Scholes volatility. We also demonstrate 
how to calculate realistic implied volatility surfaces by 
assuming parameterisations of the fractional volatility and 
the Hurst parameter. In sections ‘Arbitrage-free, fractional 
Black–Scholes-inspired volatility surfaces’ and ‘Calibrating 
FBSI surfaces and implied Hurst exponents’, we demonstrate 
how arbitrage-free calibration would be conducted. The 
section ’Empirical FBSI surfaces and Hurst exponents: A 
South African experiment’ deals with the South African 
equity index and currency examples – we provide market-
implied Hurst parameters. We conclude the article in the 
’Conclusion’ section.

http://www.sajems.org
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Implied volatility in a fractional 
Black–Scholes market
Since the early 1970s, option pricing has been characterised 
by the seminal Black–Scholes option pricing formula, which 
gives a simple bijective mapping between an option’s price 
and the formula’s volatility parameter σBS, termed the 
option’s ‘implied volatility’. Under the idealised, theoretical 
assumptions of the Black–Scholes framework, implied 
volatility is constant. However, when implied volatility is 
plotted against option strikes for a fixed expiry, one observes 
a ‘skew’ or ‘smile’ pattern in practice, largely driven by the 
non-normality of the underlying asset return distribution 
and the supply–demand dynamics within the selected 
derivatives market (Dupire 2006). Furthermore, when 
implied volatility is plotted against option term for a fixed 
strike, one observes a non-constant relationship, referred to 
as the term structure of implied volatility.

In reality, then, implied volatility is a function of an option’s 
strike and term. The practitioner’s convention in derivatives 
markets is to speak of separate implied volatility skews (or 
smiles) for individual option expiries. A collection of 
implied volatility skews is referred to as an implied 
volatility surface, which in itself is dynamic, changing with 
the underlying market conditions (see, e.g. Cont & da 
Fonseca 2002). The implied volatility surface at time t is 
denoted as σBS(K,τ,t).

Hu and Øksendal (2003) showed that the variance of the log 
returns of the stock process in a fractional Black–Scholes 
market is given by

  ,2 2σ τ














 =τ+ar ln S

S
t

t
f

H � [Eqn 4]

where σf is the volatility parameter specific to the fractional 
setting, hereafter referred to as fractional volatility. Equating 
this expression with the equivalent formula in the standard 
Black–Scholes market (i.e. substituting in H = 1/2 above and 
dropping strike- and time-dependence for now) yields the 
relationship

	 σ τ σ τ)( =
−

.
1
2

BS f
H

Equation 5 has three clear implications. Firstly, even for 
constant fractional volatility and Hurst parameters, the 
Black–Scholes implied volatility term structure is described 
by a power function rather than a constant. This is the same 
functional form used in Heston’s (1993) stochastic volatility 
model and is also the deterministic term structure function 
postulated by many market practitioners (Gatheral 2006). As 
shown in Figure 1, H  > 0.5 gives an up-sloping term structure, 
H = 0.5 gives a constant value and H < 0.5 gives a downward-
sloping term structure.

Secondly, the standard and fractional Black–Scholes models 
give the same implied volatility – and thus option price – 

for τ = 1, regardless of the specified Hurst exponent. This is 
also evident from Figure 1. It follows that if one assumes 
constant fractional model parameters, then it must be that 
σf = σBS (1).

Thirdly, there is no implicit strike dependence in the fractional 
Black–Scholes model. This means that the single volatility 
term structure would apply to all option strikes, which is not 
consistent with reality. At the very least, one would need to 
introduce strike dependence into the fractional volatility 
parameter in order to match the τ = 1 implied volatility skew, 
which is independent of Hurst exponent by construction. 
The simplest deterministic model used in practice that gives 
a reasonable description of the implied volatility skew 
around current spot levels is a quadratic equation (Dumas, 
Fleming & Whaley 1998):1

σf  (X) = β0 + β1X + β2 X 2,� [Eqn 6]

where X is the ratio of the option strike K to the current spot 
price St, generally termed ‘moneyness’. The βi parameters 
account for the level, slope and curvature of the volatility 
skew, respectively. Figure 2 shows how different Hurst 
exponents can affect the constructed implied volatility 
surface for a fractional volatility skew (i.e. 1-year implied 
skew) indicative of equity index option markets.

While the surfaces shown in Figure 2 are generally quite 
realistic, neither captures the universal property that all 
implied volatility surfaces based on martingale models flatten 
out with term (Rogers & Tehranchi 2010). This inconsistency is 
particularly evident for the H = 0.6 surface, which displays 
increasing skew and curvature across term. In general, for the 
majority of index volatility surfaces the Hurst exponent would 
need to be below 0.5 for low strikes and above 0.5 for high 
strikes to ensure that the surface levels off across term. In 
contrast, for currency implied volatility surfaces which show 
considerably more convexity than their equity index 
counterparts, one would expect the Hurst exponent to be 
below 0.5 for both very high and very low option strikes. 
While these expectations stem purely from the mathematics of 
Equation 5 and the shape of volatility surfaces observed in 
practice, given the stylised facts already known about each 

1.Even though a quadratic volatility function does not satisfy Lee’s moment formula 
(Roper 2010), it is still widely used in practice (Kotzé & Joseph 2009).
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FIGURE 1: Possible implied volatility term structures in a fractional Black–
Scholes market for different Hurst exponents and σf = 20%.
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asset class, it would seem plausible to assume that there is an 
underlying economic rationale to the strike profile of the Hurst 
exponent. This point will be revisited later but for now, we 
simply observe that realistic index and currency volatility 
surfaces would require a strike-dependent Hurst exponent.

Figure 3 shows the implied volatility surface constructed 
when using a similar deterministic quadratic function as per 
Equation 6 for the Hurst exponent. Notice the significant 
level of skew achieved at very short option terms – a feat 
which many stochastic volatility models struggle to achieve 
(Gatheral 2006) – in combination with a substantially flatter 
surface at longer terms.

While the quadratic formulations used here are purely for 
pedagogical purposes, it is evident that even these simple 
parameterisations provide one with a high degree of flexibility 
for modelling realistic volatility surfaces in the fractional 
Black–Scholes framework. Moreover, the idea of using strike-
dependent fractional parameters in Equation 5 provides one 
with the basis for a robust but simple volatility surface model.

Arbitrage-free, fractional Black–
Scholes-inspired volatility surfaces
Creating arbitrage-free parameterisations of the implied 
volatility surface is extremely important for derivatives 
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trading and risk management in practice and has been given 
considerable attention in the literature (Damghani & Kos 
2013; Gatheral & Jacquier 2014; Lee 2004; Roper 2010, and the 
references therein). In this section, we consider a fractional 
Black–Scholes-inspired (FBSI) parameterisation of the 
volatility surface: a combination of the fBm framework 
outlined in the ’Implied volatility in a fractional Black–
Scholes market’ section and the stochastic volatility-inspired 
(SVI) model of Gatheral (2004) for the strike-dependent 
fractional volatility parameter.

Carr et al. (2005) introduced the idea of static arbitrage, and 
Carr and Madan (2005) identified the sufficient conditions – 
eliminating call spread, butterfly spread and calendar 
spread arbitrages – for ensuring that a set of option prices 
excludes all static arbitrage. Roper (2010) extended this line 
of research to find the corresponding set of necessary and 
sufficient conditions to ensure that the volatility surface 
was free from all static arbitrages. Following the notation of 
Gatheral and Jacquier (2014), we outline these conditions – 
no calendar spread arbitrage and no butterfly spread 
arbitrage – below.

Let us define k = ln(K/F) as the log moneyness measured 
relative to the forward F and τ τσ τ) )( (=, ,2w k kBS  as the total 
implied variance surface. Then, assuming that dividends are 
proportional to the underlying asset price, the volatility 
surface W is free of calendar spread arbitrage if and only if

τ τ)(∂ ≥ ∀ ∈ >τ , 0,             , 0.w k k � [Eqn 7]

Furthermore, each time slice of the volatility surface w(k) is 
free from butterfly spread arbitrage if and only if the 
corresponding density function is non-negative, or 
equivalently

) ) )( ( (= − ′





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








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

= −∞
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lim lim
2

. d k k

w k

w k
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� [Eqn 9]

Note that w’(k) and w ”(k) refer to the first and second 
derivatives, respectively. Damghani and Kos (2013) give a 
necessary but not sufficient butterfly spread condition which 
they state is commonly used in practice:

, 4,       , 0.τ τ( )∂ ≤ ∀ ∈ >w k kk � [Eqn 10]

Let us now consider the fractional Black–Scholes framework 
as per the ’Implied volatility in a fractional Black–Scholes 
market’ section. It follows from Equation 5 that the total 
implied variance surface at a given time can be written as

τ σ τ

ν τ

) )
)

( (
(

=

=

)

)

(

(
,

,

2 2

2

w k k

k

f
H k

f
H k

� [Eqn 11]

where the formulations for fractional variance ν σ= 2
f f  and 

Hurst exponent remains fully general. Applying the condition 
in Equation 7, we have that Equation 1 is free from calendar 
spread arbitrage if and only if

ν τ τ) )( ( ≥ ∀ ∈ >)( −2 0,       , 0.2 1k H k kf
H k � [Eqn 12]

Given that H ∈ [0,1] by construction and vf > 0, it is trivial to 
see that Equation 12 will hold true at all times. Therefore, 
regardless of the parameterisations specified for fractional 
volatility and Hurst exponent, the fractional Black–Scholes 
volatility surface is always free from calendar spread 
arbitrage. The same conclusion cannot be easily discerned for 
butterfly spread arbitrage.

As mentioned above, we limit our focus to Gatheral’s (2004) 
SVI model as a candidate for the fractional variance function. 
The SVI model is one of the most widely used deterministic 
volatility functions in the equity derivatives market and is also 
commonly used by foreign exchange derivatives practitioners. 
Although Gatheral and Jacquier (2014) have recently proposed 
several alternative formulations of the model parameters, we 
consider the original ‘raw’ parameterisation for simplicity. For 
a given parameter set Χ = {a, b, ρ, m σ}, the SVI model for total 
implied variance is given by

; ,
2 2χ ρ σ( ) ( ) ( )= + − + − +









w k a b k m k m � [Eqn 13]

where ∈a  gives the overall level of variance, b ≥ 0 gives the 
angle between the left and right asymptotes, |ρ| < 1 
determines the orientation of the curve, ∈m  controls the 
horizontal positioning of the curve and σ > 0 adjusts the 
smoothness of the curve vertex. Gatheral (2004) also imposes 
the condition that + σ − ρ ≥1 02a b  in order to ensure that 
w(k; x) ≥ 0 for all ∈k  . Gatheral further states that in order to 
meet the necessary (but not sufficient) condition for no 
butterfly arbitrage as per Equation 10, one must have

1 4 .ρ
τ( )+ ≤b � [Eqn 14]

Although Roper (2010) showed that a parameter set which 
satisfies Equation 14 can still breach the more stringent 
Equation 8 and thus admit butterfly arbitrage, Gatheral 
(2004), among others, suggests that the SVI parameter sets 
calibrated to real market data are arbitrage-free.

As noted in the ’Implied volatility in a fractional Black–Scholes 
market’ section, fractional variance is equivalent to 1-year total 
implied variance and is thus independent of the Hurst exponent. 
Therefore, one can directly apply Equations 13 and 14 in order 
to find the necessary arbitrage-free SVI parameter ranges. 
Specifically, for the τ = 1 fractional variance time slice, the 
necessary condition for no butterfly arbitrage is 0 4 / 1 ρ≤ ≤ +b .

http://www.sajems.org


Page 6 of 11 Original Research

http://www.sajems.org Open Access

Similarly ensuring no arbitrage across all volatility time slices 
is not easy because of the strike-dependent Hurst exponent. 
Taking the derivative with respect to strike of the total 
variance surface as per Equation 11, we have

, ' ln 2 ' 4 .2τ τ ν τ
τ( )( ) ( ) ( ) ( ) ( )∂ = + ≤( )w k k v k H kk

H k � [Eqn 15]

Even for simple H(k) functions, it is not obvious what the 
necessary arbitrage-free parameter ranges should be. 
However, it is a straightforward, if somewhat long-winded, 
exercise to directly calculate the values of g(k) for a given 
Hurst parameterisation and thus enforce the necessary Hurst 
parameter ranges during calibration to remove any butterfly 
spread arbitrage.

Calibrating fractional Black– 
Scholes-inspired surfaces and 
implied Hurst exponents
Building from the ’Implied volatility in a fractional Black–
Scholes market’ and ‘Arbitrage-free, fractional Black–Scholes 
Scholes-inspired volatility surfaces’ sections, we formally 
define the FBSI parameterisation of total implied variance as 
follows:

( , ) ( )

( ) k–m ( – )

( ) .

2 ( )

2 2

0 1 2
2

τ τ

ρ σ

β β β

{ }
=

= + ( ) + +

= + +

w k v k

v k a b k m

H k k k

f
H k

f � [Eqn 16]

Motivated by the observations in sections ’Implied volatility 
in a fractional Black–Scholes market’ and ‘Arbitrage-free, 
fractional Black–-Scholes Scholes-inspired volatility surfaces’, 
and in the absence of prior knowledge, the choice of a 
quadratic function for the Hurst exponent seems a reasonable 
guess. In this case, β0 ∈ [0,1] represents the at-the-money 
(ATM) level, β1 the slope and β2 the curvature of the Hurst 
exponent.2 The function g(k) can be calculated analytically 
from Equation 16 and used to ensure that, in conjunction 
with the SVI parameter bounds given in the ’Implied 
volatility in a fractional Black–Scholes market’ section, the 
calibrated βi parameters do not introduce butterfly arbitrage 
at any time slice. The complete volatility surface is thus a 
function of eight parameters, xf = {a, b, ρ, m, σ, β0, β2, β3}.

Given the reliance on the SVI model to parameterise the 
fractional variance, it makes sense to augment existing SVI 
calibration algorithms for the additional Hurst exponent 
parameters. De Marco and Martini (2009) outline a robust 
quasi-explicit calibration process for the SVI model which 
produced a reliable and stable parameter set. Through a 
clever change of variables, the initial five-dimensional SVI 
minimisation problem is recast into a much simpler two-
dimensional problem, with the remaining three variables 
having (quasi-) explicit solutions within the new framework. 

2.At the money, or ATM, refers to when the option strike is equal to the underlying 
forward price, i.e. k = 0.

This ‘2+3’ procedure is robust to initial guesses and provides 
stable, arbitrage-free SVI parameters. In a similar vein, we 
reformulate the raw eight-parameter FBSI model calibration 
into a ‘5+3’ procedure, with the three Hurst parameters 
supplementing the two SVI parameters as per De Marco and 
Martini (2009). Testing shows that this procedure is also 
generally robust to initial guesses and fast to implement. The 
FBSI model and calibration procedure thus give one a robust 
means of modelling the full volatility surface and also of 
deriving the implied Hurst exponent across the full 
moneyness range at any given time.

To the authors’ best knowledge, the only other research to 
date that considers similar fBm-based volatility surface 
parameterisations is the fBm variance term structure model 
posited by Li and Chen (2014).3 Based on the relationship 
between implied volatility in the Black–Scholes framework 
and implied volatility in the fBm framework, Li and Chen 
(2014) show that one can estimate both the fractional volatility 
and the Hurst exponent from traded option data via linear 
regression. Consider the logarithm of the power function 
given in Equation 5:

ln ln 1
2

ln .σ τ σ τ( )( ) ( )  = + −






HBS f � [Eqn 17]

Li and Chen (2014) suggest using ordinary least squares 
(OLS) to estimate the fractional volatility and implied Hurst 
exponent by regressing the logarithm of ATM implied 
volatility against the logarithm of term. In this way, one is 
able to calculate a single fractional volatility and Hurst 
exponent from the option data. Li and Chen further suggest 
replacing the Black–Scholes implied volatilities in Equation 
17 with the model-free implied volatilities of Britten-Jones 
and Neuberger (2000), which can be calculated in practice by 
applying the standard VIX methodology at all observed 
option terms. The use of model-free implied volatility as the 
dependent variable has the benefits of removing dependence 
on any specific pricing model and of using information from 
all traded options rather than only ATM options.4 However, 
despite incorporating information from the full volatility 
surface, this method still only allows one to model the term 
structure of implied volatility.

Empirical fractional Black–Scholes-
inspired surfaces and Hurst 
exponents: A South African 
experiment
The FBSI and Li and Chen (LC) model are calibrated to two 
sets of South African option market data. The first data set 

3.Although the concept of fractional volatility models has been around since the work 
of Comte and Renault (1996, 1998) and Baillie, Bollerslev and Mikkelsen (1996), this 
is essentially a subfield of the much larger stochastic volatility literature – continuous 
and discrete – where fractional noise rather than Gaussian noise is used within the 
volatility process. In comparison, this work differs in three aspects. Firstly, the use of 
fractional noise is restricted to the stock price process. Secondly, this work falls 
within the deterministic rather than stochastic volatility modelling literature. 
Thirdly, the Hurst exponent is assumed to be a non-constant function of strike and 
time rather than a constant parameter in a volatility process.

4.This second benefit stems from the fact that model-free implied volatility is 
calculated using the complete volatility skew at each term.
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consists of 529 weekly observations of implied volatility 
skews for listed futures options on the FTSE/JSE Top40 index 
(Top40) over the period 5 September 2005 to 30 November 
2015. Top40 options are the most actively and liquid traded 
derivative contracts in South Africa. These options trade on 
the South African Futures Exchange (SAFEX) on the basis of 
implied volatility and the option price is calculated using the 
Black (1976) option pricing formula. The weekly implied 
volatility skews were obtained from Peregrine Securities and 
generally, cover a strike range of 75% – 125% of the forward 
price. The second data set consists of 146 weekly observations 
of implied volatility skews for listed futures options on the 
United States Dollar to South African Rand (USD/ZAR) 
exchange rate over the period 11 February 2013 to 30 
November 2015. The volatility skews initially cover a range 
of 80% – 120% of the forward price up to November 2014 and 
thereafter cover a 70% – 130% range. These data were also 
obtained from Peregrine Securities.

Fractional Black–Scholes-inspired index 
volatility surfaces
Let us first consider the results for the index volatility surfaces. 
Figure 4 shows the comparison of the Top40 index performance 
since September 2005 with the fractional volatility and Hurst 
exponents from the calibrated FBSI volatility surface model 
and the LC volatility term structure model.

Visual inspection confirms the well-documented inverse 
relationship between index performance and fractional 
volatility (i.e. 1-year implied volatility) and also suggests a 
positive relationship between index performance and the 
Hurst exponent, particularly evident during the 2008 
financial crisis. This is confirmed by the moderately 

positive correlation values of 0.47 and 0.45 displayed for 
each model respectively, in Table 1. There are also times 
when one sees significant changes in the Hurst exponent 
without any large, associated downturns in the index. For 
example, the Hurst exponent fell materially from a high of 
0.67 down to 0.46 during the first half of 2013, while the 
index remained range-bound around the 35  000-level. 
Over the same period, fractional volatility also remained 
fairly stable between 16% and 18% and only picked up 
briefly around the middle of 2013. This suggests that the 
Hurst exponent and fractional volatility capture somewhat 
different aspects of the uncertainty within the index and 
thus provide one with more detailed information on the 
underlying price process.

This suggestion is borne out by the correlation between 
fractional volatility and the Hurst exponent shown in Table 1. 
Although it is negative as one would expect, it is considerably 
lower in absolute terms than the correlations displayed 
between the respective parameters and the underlying index 
returns. Therefore, deconstructing the single implied 
volatility number into a long memory component and a long 
memory-conditioned volatility component may well have 
useful application in a wide range of financial applications, 

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sep-05 Sep-06 Sep-07 Sep-08 Sep-09 Sep-10 Sep-11 Sep-12 Sep-13 Sep-14 Sep-15

To
p4

0 
in

de
x

fB
m

 M
od

el
 p

ar
am

et
er

s

LC fVol LC HurstFBSI fVol FBSI HurstTop40

FIGURE 4: Top40 index performance plotted with the ATM fractional volatility and Hurst exponents from the calibrated FBSI and LC models, respectively, September 2005 
to November 2015.

TABLE 1: Correlation matrix of weekly log returns on Top40 index and associated 
implied volatility parameters, September 2005 to November 2015.
Variable Top40 LC σf LC Hurst FBSI σf FBSI Hurst

Top40 1 - - - -

LC σf -0.516 1 - - -

LC Hurst 0.473 -0.338 1 - -

FBSI σf -0.514 0.992 -0.339 1 -

FBSI Hurst 0.448 -0.313 0.956 -0.284 1
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including derivatives trading, risk management and dynamic 
asset allocation. For example, discrete delta-hedging 
strategies could potentially be improved by incorporating 
the Hurst exponent as a means of identifying how rough or 
smooth the index returns are likely to be and also whether 
the index is currently more likely to mean-revert or continue 
trending. For now, we leave application of the implied Hurst 
exponent for future research.

Notice that the ATM FBSI fractional volatility time series is 
nearly identical to the LC fractional volatility series, with a 
correlation of 0.99. The ATM Hurst exponent time series is 
also very similar across models with a correlation of 0.96, 
although slight deviations are evident in the final 2 years of 
the sample period. This high degree of equivalence indicates 
that the FBSI model provides sufficient flexibility to model 
the ATM term structure accurately even while fitting the 
complete index volatility surface. Figure 5 confirms this by 
displaying the Top40 traded volatility surface and its 
calibrated FBSI counterpart as at 30 May 2011. The modelled 
surface mirrors the market surface very well at most terms 
and moneyness levels, although there are a couple of small 
areas on the market surface where the power law model 
assumption is violated.

The reason why the FBSI model fits the equity surfaces so 
well is shown in Figure 6. The calibrated FBSI parameter 
curves are compared to those obtained from separately fitting 
the LC term structure models at each moneyness level. For 
our data, this equates to running 51 independent regressions, 

which ensures a very accurate fit of the surface thanks to the 
use of 102 parameters. Although clearly not a viable candidate 
for modelling the surface directly, this LC ‘multi-model’ 
provides one with an excellent means of evaluating whether 
the quadratic and SVI functions provide sufficient flexibility 
for capturing the required strike dependence in fBm volatility 
parameters.

As Figure 6 shows, the fractional volatility curves from both 
models are essentially equivalent, while the FBSI Hurst 
exponent shows a slight deviation from the LC multi-model 
curve above the 105% moneyness level. This discrepancy is 
responsible for the difference at high moneyness levels and 
very short terms between the traded and fitted volatility 
surfaces shown in Figure 5.

Fractional Black–Scholes-inspired currency 
volatility surfaces
Figure 7 shows the FBSI and LC model parameters from 
February 2013 in comparison with the underlying USD/ZAR 
foreign exchange rate. In contrast to the results given in the 
‘FBSI index volatility surfaces’ section, there are significant 
differences between the FBSI and LC Hurst exponents evident 
across the full sample period. The FBSI Hurst exponent is 
almost always lower than its LC counterpart and the positive 
correlation of 0.36 is much lower than one would expect given 
that both time series represent the same parameter. Fractional 
volatility is far more similar across the two models, with a 
correlation of 0.83. There are still noticeable differences though, 
with FBSI fractional also generally lower than LC fractional 
volatility across the period.

Table 1 also shows the expected positive relationship between 
exchange rate and fractional volatility ( ρ = 0.44). Interestingly, 
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a similar but negative relationship is evident between 
exchange and LC Hurst exponent ( ρ − 0.44) but not for the 
FBSI Hurst parameter ( ρ = − 0.16). Furthermore, note that 
while the USD/ZAR has consistently trended upwards over 
the sample period, both Hurst exponent and fractional 
volatility parameters remained largely range-bound for most 
of the period. Only over the last year has one seen a slight 
decline in Hurst levels and a concurrent increase in fractional 
volatility levels as the size of the weekly exchange rate moves 
has grown. Finally, Table 1 shows that the correlation between 
LC parameters is weak and negative, while that between the 
FBSI parameters is instead mildly positive. This again 
suggests a certain level of independence between the two 
implied volatility components.

The large differences between the FBSI and LC parameters 
indicate that, in its current form, the FBSI model is unable to 
adequately replicate the currency implied volatility surface. 
Figures 8 and 9 show the problem for an example currency 

surface as at 28 April 2015. The traded volatility skews are 
significantly sloped for strikes above the forward level and 
remain so even for longer terms. In contrast, the surface is 
less sloped for strikes below the forward level and flattens off 
a fair degree with term. However, because the short-term 
implied volatility skew flattens out at lower moneyness 
levels, so does the curvature of the respective term structures.

Combining these observations implies that the Hurst 
exponent would not only need to be convex but also include 
inflection points at low moneyness levels and possibly also 
at high moneyness levels, as shown in the lower panel of 
Figure 9. The assumed quadratic function is not capable of 
this, and thus the calibrated Hurst function represents a 
trade-off between matching the required level of ATM 
convexity and minimising the mismatch for far out of the 
money volatility points. Therefore, we would suggest using 
a different functional form for the Hurst exponent in the 
currency derivatives space. Given the need for an inflection 
point in the Hurst exponent curve, the most obvious starting 
point would be a third-order polynomial. For now, we leave 
this remark as an avenue for future research. The calibrated 
FBSI volatility surface shown in Figure 8 still manages to 
capture most of the traded surface’s characteristics with the 
added benefit of being fully analytic; an important 
consideration when valuing exotic derivatives under local 
volatility.

TABLE 2: Correlation matrix of weekly log returns on USD/ZAR and associated 
implied volatility parameters, February 2005 to November 2015.
Variable USD/ZAR LC σf LC Hurst FBSI σf FBSI Hurst

USD/ZAR 1 - - - -

LC σf 0.438 1 - - -

LC Hurst -0.442 -0.175 1 - -

FBSI σf 0.451 0.834 -0.360 1 -

FBSI Hurst -0.159 -0.149 0.359 0.240 1
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Conclusion
This article addresses several theoretical and practical issues 
in option pricing and implied volatility calibration in a 
fractional Black–Scholes market. We start off by discussing 
how options can be priced when the noise component of the 
underlying risky asset is driven by an fBm. We then describe 
the links between standard Black–Scholes volatility and 
fractional Black–Scholes volatility and highlight two 
important observations. Firstly, the fractional Black–Scholes 
model admits a non-constant implied volatility term structure 
when the Hurst exponent is not equal to 0.5. More specifically, 
this term structure is described by a power function and 
is  up-sloping (down-sloping) when the Hurst exponent is 
greater (less) than 0.5. Secondly, 1-year implied volatility is 
independent of the Hurst exponent and equivalent to 
fractional volatility.

Building on these two observations, we show how one can 
construct realistic implied volatility surfaces by assuming 
simple parameterisations for the fractional volatility and 
Hurst exponent. In particular, we introduce the eight-
parameter FBSI model. This novel deterministic volatility 
surface model is based on the fractional Black–Scholes 
framework and uses Gatheral’s (2004) SVI parameterisation 
for the fractional volatility skew and a quadratic 

parameterisation for the Hurst exponent skew. One benefit of 
this model is that it provides us with a parsimonious 
decomposition of the implied volatility surface into an 
independent long memory component and a conditional 
volatility component. Such a decomposition could be usefully 
applied in a wide range of financial applications, including 
derivatives trading, risk management and dynamic asset 
allocation.

We address the issue of arbitrage-free calibration for the FBSI 
model in depth and prove in general that any FBSI volatility 
surface will be free from calendar spread arbitrage. Although 
one cannot make a similar statement about butterfly spread 
arbitrage, we show that it is simple to control for this during 
the calibration process because of the fully analytical form of 
the surface.

Finally, we test the FBSI model empirically against Li and 
Chen’s (2014) volatility term structure model using implied 
volatility surfaces on South African listed Top40 index futures 
options and on listed USD/ZAR currency futures options. 
We find that the FBSI model fits the equity implied volatility 
surfaces very well and, furthermore, that the decomposition 
of implied volatility into its long memory and fractional 
volatility components provides one with more detailed 
information on the true uncertainty in the underlying asset 
price process. The currency implied volatility surfaces 
provide more of a calibration challenge for the FBSI model 
because of a flattening in the term structure at far out of the 
money strikes. The calibrated FBSI volatility surface still 
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manages to capture most of the traded surfaces’ characteristics 
with the added benefit of being fully analytic; an important 
consideration when valuing exotic derivatives under local 
volatility.
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