
52
SAJEMS NS 16 (2013) No 1

A NETWORK BRANCH AND BOUND APPROACH
FOR THE TRAVELING SALESMAN MODEL

Elias Munapo
Graduate School of Business and Leadership, University of KwaZulu-Natal

Accepted: June 2012

This paper presents a network branch and bound approach for solving the traveling salesman problem. The
problem is broken into sub-problems, each of which is solved as a minimum spanning tree model. This is
easier to solve than either the linear programming-based or assignment models.

Key words: NP hard, traveling salesman problem, spanning tree, branch and bound method

JEL: C610

1

Introduction
The traveling salesman problem (TSP) is one
of the NP hard problems that are of concern to
researchers. A salesman visits each of the
given N cities or towns in such a way that each
city is visited once, the total distance travelled
is minimal and must return to his or her
original base (Berman & Karpinski, 2006;
Gutin & Punnen, 2006). Up to now we have
been unaware of any effective and exact
method for solving this problem.

There are several simple variations of the
TSP that have originated from various real-life
problems. These include the MAX TSP, bottle-
neck TSP, TSP with multiple visits (TSPM)
and clustered TSP. Let (,)G V E= be a graph
(directed or undirected) and F be the family of
all Hamiltonian cycles (tours) in G. For each
edge e E∈ a cost (weight) ec is prescribed.
The matrix ()ij N NC c ×= is the distance or weight
matrix, where the (,)thi j entry ijc corresponds to
the cost of the edge joining node i to node j in
G. Let the node set be {1,2,..., }.V N= In other
words, the TSP is to find a tour (Hamiltonian
cycle) in G such that the sum of the costs of
the edges of the tour is as low as possible.

In the MAX TSP, the objective is to find a
tour in G where the total costs of edges of the
tour is a maximum. This is solved as a TSP by
replacing each edge costs with its additive
inverse. In bottleneck TSP, the objective is to

find a tour in G such that the highest cost of
edges in the tours is as low as possible. A
bottleneck TSP can be formulated as a TSP
with exponentially high edge costs. In the
TSPM we find a routing for travelling salesman
who starts at a given node of G, visits each
node at least once and comes back to the
starting node in such a way that the total
distance travelled is minimized. The TSPM is
transformed into a TSP by replacing the edge
costs with the shortest path distances in G. The
node set of G is partitioned into clusters. Then
the objective of clustered TSP is to find a least-
cost tour in G subject to the constraint that
cities within the same cluster must be visited
consecutively. This problem can be trans-
formed into a TSP by adding a large cost (LC)
to the cost of each inter-cluster edge.

TSP and its variations have a very wide
application and span several areas of knowledge
which include operations research, computer
science, genetics, electronics and logistics.
TSP is used in machine sequencing and
scheduling. The machine sequencing problem
is to find an order in which the jobs are to be
processed such that the total machine set up
costs are minimized. In some manufacturing
systems such as cellular processes, certain
products require similar processing and the
problem is to group them so as to achieve
efficiency and cost reductions. Let (,)G V A E= ∪
be a mixed graph where elements of A are
arcs (directed) and elements E are edges

Abstract

SAJEMS NS 16 (2013) No 1

53

(undirected), 1A A⊂ and 1 .E B⊂ The arc routing
problem is to find a minimum cost closed walk
on G containing all arcs in A1 and all edges in
1.E The TSP model is also used in creating

matrices with certain desired structures which
is applied in statistical data analysis and theory
of group discussion. Many other applications
of TSP models are contained in literature.

2
The TSP model

The objective is to move from node 1 and back
in such a way that every node is visited once
and the total distance is minimized. It is also
assumed that two arcs emanate from each of
the nodes.

Figure 1
TSP model

The objective is to move from node 1 and back
in such a way that every node is visited exactly
once and the total distance minimized. It is
also assumed that each node has at least two
arcs.

TSPo = Min Z = cij xij
j
∑

i
∑

Such that xij =1
i=1

N

∑ , (for Nj ,...,2,1=)

 ∑
=

=
N

j
ijx

1
1, (for Ni ,...,2,1=)

1−≤+− NNxuu ijji (for NjNiji ,...,2,1;,...,2,1; ==≠)

All 0≥ju and ijx is a binary variable.
Where ijc is the distance from city i to city j

for i ≠ j .
Letting ,Mcii = where M is very large

relative to the actual distances between the
cities ensures that the movement to city i
immediately after leaving city i is not possible.

3
Solving the TSP

There are two main categories of TSP which
are symmetric and asymmetric. If the distance
between two nodes in the TSP network is the
same in both directions, then the TSP is called

symmetric, otherwise it is referred to as
asymmetric. We are not aware of any efficient
exact method for solving the traveling
salesman problem. There are several heuristics
(see Berman & Kapinski, 2006; Gutin &
Punnen, 2006; Wolsey, 1980; Winston, 2004)
and for exact approaches (see Gutin & Punnen,
2006; Nadef, 2002; Padberg & Rinald 1991;
Winston, 2004) available in the literature.

3.1 Heuristics
These are approximation methods that quickly
lead to good solutions which are not necessarily
optimal. There are several classes of heuristics,
some of which are:
• constructive heuristics;
• iterative improvement;
• randomized improvement.
More information on each class of these
heuristics can be found in writing by Berman
& Kapinski (2006), Gutin & Punnen (2006) or
Wolsey (1980). Even though some of these
approximating methods have improved we
cannot be sure how far these approximated
solutions are from the optimal ones. For
example when all the towns in very large
countries such as Russia, USA or China are
visited, the difference between the exact and

 2

P

1
3

Q

N

�
�
�

���
�
�
�

x2P

x12 x23

x13

x1M

xiN
x jN

xkN

 �
�
 �

54
SAJEMS NS 16 (2013) No 1

approximate solutions may amount to millions
of dollars.

3.2 Exact approaches
The most obvious exact approach is to try all
the possible routes to decide which one is the
best. The worst cost for this approach is of
factor (!)O n and is not practical for a large
number of towns. Other exact approaches
include
• Linear programming (LP) based branch and

cut methods (see Gutin & Punnen, 2006;
Karlof, 2005; Mitchell, 2001; Nemhauser
& Wolsey, 1988);

• Branch and bound methods with assignment
sub-problems (see Winston, 2004);

• Dynamic programming techniques (see Gutin
& Punnen, 2006).

Efforts to improve these exact approaches have
been unsuccessful. Large amounts of computa-
tional times are required. The computational
times for these exact approaches are not

practical since decisions have to be made
urgently in war or disaster situations.

4
Network branch and

bound approach
In this paper an exact branch and bound
approach is proposed. The network branch and
bound uses minimum spanning trees (MST) as
sub-problems. The minimum spanning tree can
be solved efficiently by the available
approaches. The MST model is easier to solve
than either the LP-based or assignment sub-
problems that are currently used. In this paper
the following definitions apply.

4.1 Definitions
A tree is a set of nodes that are connected by
arcs to form a single structure.

A leaf is a node that has no children and is
connected to a tree.

Figure 2

An example of a tree

Node 1 is an example of a leaf. Clearly it has
no children.

For a network with N nodes, a spanning
tree is a group of 1n − arcs connecting all
nodes of the network and contains no loops.

Minimum spanning tree (MST)
A spanning tree of minimum length in a
network is called a minimum spanning tree.

4.2 MST algorithm
The minimum spanning tree algorithm is used
to find the minimum spanning tree for a given
network. The algorithm comprises of the
following steps.

Step One: Begin at any node i and join node
i to node j, closest to node i. The two nodes i
and j now form a connected set of nodes

 3

5

1 2

4

���

���

x25
x5i

x13
x34

x4 j

SAJEMS NS 16 (2013) No 1

55

C ={i, j} and arc (,)i j will be in the minimum
spanning tree. The remaining nodes in the
network ()C are the unconnected set of nodes.

Step Two: Choose a member of ()C n that is
closest to some node in C. Let m represent the
node in C that is closest to n. Then the arc
(,)m n will be the minimum spanning tree.
Update C and .C Since n is now connected
to { , },i j C now equals { , , },i j n and we must
eliminate node n from .C

Step Three: Repeat this process until a
minimum spanning tree is found. Ties for the
closest node and arc are broken arbitrarily. In
this paper preference is given to the arc that is
least likely to form a leaf. The strategy of the
algorithm proposed in this paper lies in solving
the TSP as an MST and then using branching
to remove leaves.

Theorem 1
The MST algorithm finds a minimum spanning
tree.

4.2.1 Proof by contradiction:
Let
S be the minimum spanning tree,
Ck be the nodes connected after iteration k of
MST has been completed,
kC be the nodes not connected after iteration k

of MST has been completed,
kA be the set of arcs in the minimum spanning

tree after k iterations of MST algorithm have
been completed.
Suppose that the MST algorithm does not yield
a minimum spanning tree.

Then the arc chosen at iteration k ()ka is not
in S, i.e., .ka S∉

All arcs in 1kA − are in S, i.e., 1 .kA S− ⊆
This implies ka S∈ and ka leads from node in

1kC − to a node 1.kC −
Replacing ka with ,ka we obtain a spanning

tree shorter than S.
The contradiction proves that all arcs

chosen by the MST must be in S. The MST
algorithm does indeed find a minimum
spanning tree. This proof can be found in
books such as Gutin and Punnen (2006).

4.3 TSP tree, transformation and arc
fixing

TSP tree
Is an MST without leaves other than the first
and last nodes.

Transforming a spanning tree
Branching can be used to transform any MST
into TSP.

Fixing an arc
The MST algorithm uses 1n − arcs to connect
the nodes in the network, but the optimal
solution of the TSP must have n arcs. This
problem can be alleviated if one arc which is
part of the optimal tour is known before the
problem is solved. Unfortunately this arc is not
known. In the optimal tour exactly two arcs are
used in completing a tour at every node. With
this knowledge arcs can be fixed and the
necessary branching done so as to remove the
unwanted leaves from a current minimal
spanning tree. Let the number of arcs at a node
i be l.

Figure 3
Arc fixing

 i
�
�
�

xi1

xi2

xil

56
SAJEMS NS 16 (2013) No 1

Arc fixing way 1: If a single arc is fixed then

1 2 ... 1.i i ilx x x+ + + =
There will be a total of l sub-problems (SB)

as shown in Figure 4 below.

Figure 4
Branching at node i

The sub-problems 1 2, ,..., lSB SB SB are mutually
exclusive subsets of .TSP

1 2 ... lSB SB SB TSP∪ ∪ ∪ =
For α ≠ β

SB SBα β∩ =∅
Fixed value in the hth branch is given by hF
and is the value of a single arc. Fixing way 1 is
done before applying the spanning tree
procedure. The fixed arc is removed from the

TSP before applying the spanning tree procedure.
Arc fixing way 2: At every node exactly

two arcs are used in completing the tour. This
is because at any node we must have one arc in
and one arc out for us to complete the tour.
This is also referred to as the one arc in and
one arc out rule.

1 2 ... 2i i ilx x x+ + + =
Fixing of two arcs at node i will result in
1
2 (1)l l − sub-problems (SP) or branches.

Figure 5

Branching at node i

Where 1
2 (1).r l l= − The number of sub-problems

(r) formed by branching is given by

2
!

2!(2)!
l lr C

l
= =

−

(1) (2)!
2!(2)!

l l l
l

× − × −
=

−

(1)
2

l l −
=

Also the sub-problems 1 2, ,..., rSB SB SB are mutu-
ally exclusive subsets of TSP.

1 2 ... rSB SB SB TSP∪ ∪ ∪ =
For α β≠

SB SBα β∩ =∅
Fixed value in the hth branch is given by hF and
is the sum of two arcs.

Fixing way two is also done before applying
the spanning tree procedure. The two fixed

 TSP

��� SB1 SB2 SBr

xi1 + xi2 = 2
xi1 + xi3 = 2

xi (l−1) + xil = 2

 TSP

��� SB1 SB2

xi1 =1

xi2 =1 xil =1

SBl

SAJEMS NS 16 (2013) No 1

57

arcs and an included node i are removed from
the TSP before applying the spanning tree
procedure.

Theorem 2
Any sub-problem that results in at least one
leaf in the network structure is infeasible.

From the definition of a TSP at node i,
1 2 ... 2.i i ilx x x+ + + =

This is referred to as the one arc in and one arc
out rule.
Proof: A leaf occurs when

1 2 ... 1.i i ilx x x+ + + =
This is infeasible to the one arc in and one arc
out rule. Two arcs are required to pass through
a node.

4.4 Removing leaves in an MST
Besides fixing arcs, branching is also used to
remove leaves in MST. A branch fathoms
• if the sub-problem becomes infeasible;

• if the MST for the sub-problem is also a
TSP; and

• or if the objective value given by the sub-
problem is larger than some given lower
bound (LB).

4.4.1 Theorem 3
Any node j is selected for branching
a) if the number of arcs is greater than two,

i.e., 1 2 ... 2.j j jtx x x+ + + ≥
b) if it has the smallest number of arcs

emanating from it.
Where t is the number of arcs emanating from
node j.

Proof (a)
Branching is done to enforce the restriction,

1 2 ... 2.j j jtx x x+ + + =
This can be done if the number of arcs is

two or more, i.e. 1 2 ... 2.j j jtx x x+ + + ≥

Figure 6

Branching at node j

Where
• SBv is the sub-problem after the vth iteration;
• SBvk is the kth branch at kth node.
Similarly the number of sub-problems (vr)
formed by branching is given by

(1)
2

t tvr −
=

The sub-problems 1 2, ,...,v v vrSB SB SB are also mutu-
ally exclusive subsets of SBv .

1 2 ...v v vr vSB SB SB SB∪ ∪ ∪ =
For δ ≠ λ

SB SBδ λ∩ =∅

Proof (b)
Let the number of arcs emanating from node i
be given by ti .The number of arcs at this node

is directly proportional to the number of sub-
problems ir generated by branching at node i.
i.e. ti  ri
Suppose we are selecting nodes in an in
increasing order of the number of arcs i.e.

r1 ≤ r2 ≤ ...≤ rN
Where N is the number of nodes in the TSP
and node 1 has the least number of arcs
followed by node 2, then node 3 in that order
up to variable node N. When the algorithm is
applied the following sub-problems are visited
in the search process. The worst case is
assumed in the search process.
Starting with the most restricted variable
Stage 1: number of sub-problems visited = r1 ;
Stage 2: number of sub-problems visited = 1 2r r ;

��� SBv1 SBv2 SBvr

SBv

x j1 + x j2 = 2

x j1 + x j3 = 2

x j (t−1) + x jt = 2

58
SAJEMS NS 16 (2013) No 1

Stage N: number of sub-problems visited
= 1 2... Nr r r ;
The total number of sub-problems (Aτ) is:

1 1 2 1 2... ...A Nr r r r r rτ = + + +
Starting with the least restricted variable
Stage 1: number of sub-problems visited = Nr ;
Stage 2: number of sub-problems visited
= 1N Nr r − ;
Stage N: number of sub-problems visited
= 1 1...N Nr r r− ;
Total number of nodes (τB) is:

1 1 1... ...B N N N N Nτ γ γ γ γ γ γ− −= + + +
 ∴

BA ττ ≤
It is computationally cheaper to start with node
with the least number of arcs.

4.5 The TSP - MST inequality
The objective value (SUB(MSTo)) of any sub-
problem obtained by solving as MST plus a
fixed value (Fv) from one of the arcs is less
than or equal to the optimal tour (SUB(TSPo)
of the sub-problem.

() ()o v oSUB MST F SUB TSP+ ≤
Proof

() ()o v v o vSUB MST F F SUB TSP F+ − ≤ −
() ()o o vSUB MST SUB TSP F≤ −

Let () ,o v sSUB TSP F T− = where a Ts is a spanning
tree structure.
Then ()o sSUB MST T≤
If ()o sSUB MST T=
Then Ts is a tree structure without any leaves
but connects all the nodes.

 This is valid, as SUB(MST) is the smallest
sum of (1)n− arcs used to connect all the nodes
in any network structure where loops are not
acceptable. Loops are not possible in Ts as one
arc has been fixed.

4.6 Network branch and bound
approach

Steps of the network branch and bound algo-
rithm are summarized as follows.

Step 1: Select the node with the least number
of arcs (l). Fix these arcs by branching into l
sub-problems (way 1) or sub-problems
(way 2).

Step 2: Solve each sub-problem generated
in Step 1 as MST. A sub-problem fathoms
• if it becomes infeasible;
• if the MST for the sub-problem is also a

TSP; and
• or if the objective value given by the sub-

problem is larger than some given lower
bound (LB) obtained in an earlier sub-
problem. The optimal tour is given as the
sub-problem with the overall shortest tour.

Else go to Step 3.
Step 3: From those MST with leaves select the
node associated with the least number of
arcs. (t). Branch into sub-problems
and return to Step 2.

4.7 Optimality
The solution obtained when using the network
branch and bound is exact.

Figure 7
Optimality

���

SB1 SB2 SBr

TSB

 FµF1 F2

l(l −1)
2

t(t −1)
2

SAJEMS NS 16 (2013) No 1

59

Where Fj is the fathomed sub-problem and
µ is the number of fathomed sub-problems,

1 2min[, ,...,] ().o oTSP F F F SUB MSTµ= =

4.8 Numerical illustration
Use the network branch and bound to solve the
following TSP.

Figure 8

Main problem

4.8.1 Solution using the network branch and

bound method
The node with the least number of arcs is node
8. Fixing can be done in two ways. Way 1 is
to fix either arc 6-8 or arc 7-8. This is done
by using x68 + x78 =1 to branch into two sub-
problems. Way 2 is done by using 68 78 2x x+ =

to branch into a single sub-problem

The two ways will produce the same solution
and way 2 is arbitrarily selected for this
illustration. Fixing is done by removing the
two arcs 6-8 and 7-8 and the included node 8
from the TSP network diagram. The network
diagram reduces to 7 nodes and 12 arcs, as
shown below in Figure 9.

Figure 9

Fixing arcs 6-8 and 7-8 and removing included node 8, 1 1 2 3.F = + =

Applying the minimum spanning tree algorithm, we have Figure 10.

2

1

3

4

5

6

7

3

5
4

7
3 3

3

5

2
2

6

2

1

3

4

5

6

7

8

3

5
4

7

1

3 3

3

5

2
2

2
6

2(2−1)
2

=1
"

#
$

%

&
'.

60
SAJEMS NS 16 (2013) No 1

Figure 10
First minimum spanning tree

Selecting node 4 as the only leaf we have,

14 34 46 2.x x x+ + =
The equation implies the number of sub-

problems is given by
3

2
3!

2!(3 1)!
C =

−

 sub-problems.
Sub-problem 2
(i.e. 14 34 2x x+ =)

Figure 11
Fathomed Sub-problem 2

Sub-problem 3
(i.e. 14 46 2x x+ =)

Figure 12
Fathomed Sub-problem 3

2

1

3

4

5

6

7

3

5
4

7
3 3

3

5

2

6

2

1

3

4

5

6

7

3

5
4

7
3 3

3

5

2
2

2

1

3

4

5

6

7

3

5
4

7
3 3

3

5

2
2

6

= 3+ 2+ 2+3+3+ 4+ (3)
MST = 3+ 2+ 2+3+3+ 4+ F1

= 20.

= 3

MST = 3+ 2+5+3+3+ 4+ F1
= 3+ 2+5+3+3+ 4+ (3)
= 23= LB

F1 = 23.

SAJEMS NS 16 (2013) No 1

61

16 5 2 3 3 4MST F= + + + + + +

This sub-problem has fathomed, since 2F is

greater than the lower bound (LB) given earlier
in sub-problem 2.
Sub-problem 4
34 46 2x x+ =

Figure 13
Fathomed sub-problem

16 2 2 3 3 4MST F= + + + + + +

The sub-problem has fathomed, since the
minimum spanning tree does not have leaves.
The network branch and bound algorithm full
search tree is presented in Fig 13.

Figure 14
Full Search tree

min[23 25 23] 23Z = + + =

SB2 SB3 SB4

TSB

SB1

x68 + x78 = 2

x34 + x46 = 2x14 + x46 = 2x14 + x34 = 2

Z1 = 23(LB) Z2 > 26 Z3 = 23

2

1

3

4

5

6

7

3

5
4

7
3 3

3
2

2

6

= 6+5+ 2+3+3+ 4+ (3)
= 26

F2 = 26

= 6+ 2+ 2+3+3+ 4+ (3)

F3 = 23
= 23

62
SAJEMS NS 16 (2013) No 1

Figure 15
Optimal tour

Figure 16
Optimal tour - alternative solution

7
Conclusion

The algorithm proposed in this paper uses
spanning tree approaches as sub-problems in
solving the difficult traveling salesman problem.
A spanning tree approach is more efficient
than either the LP based or the assignment sub-
problems. For small TSP models it makes
sense to use way 2 for fixing arcs since the
number of branches is given by This
number of branches increases rapidly with an
increase in the number of arcs. Thus for large
TSP models it is wise to use way 1 since the
number of branches is just l. The strength of
the approach lies in the fact that the number of

arcs on the various nodes of practical problems
is not the same. Our strategy is to target those
nodes that have the smallest number of arcs to
form branches. At the moment large amounts
of money are being wasted the world over by
sales persons, rubbish trucks, delivery or postal
companies and other organizations because
exact solutions for routing problems cannot be
determined and used in acceptable times. The
network branch and bound approach proposed
in this paper is still in its early stages of
development and more effort will be put into
refining it so that it reaches its full computational
efficiency level. In future efficiency tests for
this algorithm will be conducted on standard
benchmark TSP instances.

References
BERMAN, P. & KARPINSKI, M. 2006. 8/7-Approximation algorithm for (1,2)-TSP. Proc. 17th ACM-SIAM
SODA conference:641-648.
GUTIN, G. & PUNNEN, A.P. 2006. The traveling salesman problem and its variants. Heidelberg: Springer.
KARLOF, J.K. 2005. Integer programming: theory and practice. Boca Raton FL: CRC Press Inc.

2

1

3

4

5

6

7

8

3

5
4

7

1

3 3

3

5

2
2

2
6

2

1

3

4

5

6

7

8

3

5
4

7

1

3 3

3

5

2
2

2
6

l(l −1)
2

.

SAJEMS NS 16 (2013) No 1

63

MITCHELL, J.E. 2001. Branch and cut algorithms for integer programming: In Floudas, C.A. & Pardalos,
P.M. (eds.) Encyclopedia of optimization. Boston: Kluwer Academic Publishers.
NADEF, D. 2002. Polyhedral theory and branch and cut algorithms for the symmetric TSP. In: Gutin, G. &
Punnen, A. (eds.) The traveling salesman problem and its variations. Dordrecht: Kluwer:29-116.
NEMHAUSER, G.L. & WOLSEY, L.A. 1988. Integer and combinatorial optimization. New York: John
Wiley.
PADBERG, M. & RINALDI, G. 1991. A branch and cut algorithm for the resolution of large-scale
symmetric traveling salesman problems. SIAM Review, 33(1):60-100.
WINSTON, W.L. 2004. Operations research applications and algorithms (4th ed.) Boston: Duxbury Press.
WOLSEY, L. A. 1980. Heuristics analysis, linear programming and branch and Bound. Mathematical
Programming Study, 13:121-134.

