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Key words: NP hard, traveling salesman problem, spanning tree, branch and bound method 

JEL: C610  

 
1 

Introduction 
The traveling salesman problem (TSP) is one 
of the NP hard problems that are of concern to 
researchers. A salesman visits each of the 
given N cities or towns in such a way that each 
city is visited once, the total distance travelled 
is minimal and must return to his or her 
original base (Berman & Karpinski, 2006; 
Gutin & Punnen, 2006). Up to now we have 
been unaware of any effective and exact 
method for solving this problem.  

There are several simple variations of the 
TSP that have originated from various real-life 
problems. These include the MAX TSP, bottle-
neck TSP, TSP with multiple visits (TSPM) 
and clustered TSP. Let ( , )G V E= be a graph 
(directed or undirected) and F be the family of 
all Hamiltonian cycles (tours) in G. For each 
edge e E∈ a cost (weight) ec  is prescribed. 
The matrix ( )ij N NC c ×=  is the distance or weight 
matrix, where the ( , )thi j entry ijc corresponds to 
the cost of the edge joining node i to node j in 
G. Let the node set be {1,2,..., }.V N=  In other 
words, the TSP is to find a tour (Hamiltonian 
cycle) in G such that the sum of the costs of 
the edges of the tour is as low as possible. 

In the MAX TSP, the objective is to find a 
tour in G where the total costs of edges of the 
tour is a maximum. This is solved as a TSP by 
replacing each edge costs with its additive 
inverse. In bottleneck TSP, the objective is to 

find a tour in G such that the highest cost of 
edges in the tours is as low as possible. A 
bottleneck TSP can be formulated as a TSP 
with exponentially high edge costs. In the 
TSPM we find a routing for travelling salesman 
who starts at a given node of G, visits each 
node at least once and comes back to the 
starting node in such a way that the total 
distance travelled is minimized. The TSPM is 
transformed into a TSP by replacing the edge 
costs with the shortest path distances in G. The 
node set of G is partitioned into clusters. Then 
the objective of clustered TSP is to find a least-
cost tour in G subject to the constraint that 
cities within the same cluster must be visited 
consecutively. This problem can be trans-
formed into a TSP by adding a large cost (LC) 
to the cost of each inter-cluster edge.     

TSP and its variations have a very wide 
application and span several areas of knowledge 
which include operations research, computer 
science, genetics, electronics and logistics. 
TSP is used in machine sequencing and 
scheduling. The machine sequencing problem 
is to find an order in which the jobs are to be 
processed such that the total machine set up 
costs are minimized. In some manufacturing 
systems such as cellular processes, certain 
products require similar processing and the 
problem is to group them so as to achieve 
efficiency and cost reductions. Let ( , )G V A E= ∪  
be a mixed graph where elements of A are  
arcs (directed) and elements E are edges 

Abstract 



SAJEMS NS 16 (2013) No 1 
 

53 
 

 
(undirected), 1A A⊂  and 1 .E B⊂  The arc routing 
problem is to find a minimum cost closed walk 
on G containing all arcs in A1  and all edges in 
1.E  The TSP model is also used in creating 

matrices with certain desired structures which 
is applied in statistical data analysis and theory 
of group discussion. Many other applications 
of TSP models are contained in literature. 

2 
The TSP model 

The objective is to move from node 1 and back 
in such a way that every node is visited once 
and the total distance is minimized. It is also 
assumed that two arcs emanate from each of 
the nodes. 

 
Figure 1 
TSP model 

 
 

The objective is to move from node 1 and back 
in such a way that every node is visited exactly 
once and the total distance minimized. It is 
also assumed that each node has at least two 
arcs.  
 

TSPo  = Min Z = cij xij
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All 0≥ju  and ijx  is a binary variable.                                               
Where ijc  is the distance from city i to city j 

for i ≠ j . 
Letting ,Mcii =  where M is very large 

relative to the actual distances between the 
cities ensures that the movement to city i 
immediately after leaving city i is not possible.                          

3 
Solving the TSP 

There are two main categories of TSP which 
are symmetric and asymmetric. If the distance 
between two nodes in the TSP network is the 
same in both directions, then the TSP is called 

symmetric, otherwise it is referred to as 
asymmetric. We are not aware of any efficient 
exact method for solving the traveling 
salesman problem. There are several heuristics 
(see Berman & Kapinski, 2006; Gutin & 
Punnen, 2006; Wolsey, 1980; Winston, 2004) 
and for exact approaches (see Gutin & Punnen, 
2006; Nadef, 2002; Padberg & Rinald 1991; 
Winston, 2004) available in the literature.  

3.1 Heuristics 
These are approximation methods that quickly 
lead to good solutions which are not necessarily 
optimal. There are several classes of heuristics, 
some of which are: 
• constructive heuristics;  
• iterative improvement; 
• randomized improvement. 
More information on each class of these 
heuristics can be found in writing by Berman 
& Kapinski (2006), Gutin & Punnen (2006) or 
Wolsey (1980). Even though some of these 
approximating methods have improved we 
cannot be sure how far these approximated 
solutions are from the optimal ones. For 
example when all the towns in very large 
countries such as Russia, USA or China are 
visited, the difference between the exact and 
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approximate solutions may amount to millions 
of dollars.   

3.2 Exact approaches 
The most obvious exact approach is to try all 
the possible routes to decide which one is the 
best. The worst cost for this approach is of 
factor ( !)O n  and is not practical for a large 
number of towns. Other exact approaches 
include 
• Linear programming (LP) based branch and 

cut methods (see Gutin & Punnen, 2006; 
Karlof, 2005; Mitchell, 2001; Nemhauser 
& Wolsey, 1988); 

• Branch and bound methods with assignment 
sub-problems (see Winston, 2004); 

• Dynamic programming techniques (see Gutin 
& Punnen, 2006). 

Efforts to improve these exact approaches have 
been unsuccessful. Large amounts of computa-
tional times are required. The computational 
times for these exact approaches are not 

practical since decisions have to be made 
urgently in war or disaster situations.  

4 
Network branch and  

bound approach 
In this paper an exact branch and bound 
approach is proposed. The network branch and 
bound uses minimum spanning trees (MST) as 
sub-problems. The minimum spanning tree can 
be solved efficiently by the available 
approaches. The MST model is easier to solve 
than either the LP-based or assignment sub-
problems that are currently used. In this paper 
the following definitions apply. 

4.1 Definitions 
A tree is a set of nodes that are connected by 
arcs to form a single structure. 

A leaf is a node that has no children and is 
connected to a tree. 

 
Figure 2 

An example of a tree 

 
 

Node 1 is an example of a leaf. Clearly it has 
no children. 

For a network with N nodes, a spanning 
tree is a group of 1n −  arcs connecting all 
nodes of the network and contains no loops.  

Minimum spanning tree (MST) 
A spanning tree of minimum length in a 
network is called a minimum spanning tree. 

4.2 MST algorithm 
The minimum spanning tree algorithm is used 
to find the minimum spanning tree for a given 
network. The algorithm comprises of the 
following steps. 

Step One: Begin at any node i and join node 
i to node j, closest to node i. The two nodes i 
and j now form a connected set of nodes 
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C ={i, j}  and arc ( , )i j  will be in the minimum 
spanning tree. The remaining nodes in the 
network ( )C  are the unconnected set of nodes. 

Step Two: Choose a member of ( )C n  that is 
closest to some node in C.  Let m represent the 
node in C  that is closest to n. Then the arc 
( , )m n  will be the minimum spanning tree. 
Update C and .C  Since n is now connected  
to { , },i j  C  now equals { , , },i j n  and we must 
eliminate node n from .C  

Step Three: Repeat this process until a 
minimum spanning tree is found. Ties for the 
closest node and arc are broken arbitrarily. In 
this paper preference is given to the arc that is 
least likely to form a leaf. The strategy of the 
algorithm proposed in this paper lies in solving 
the TSP as an MST and then using branching 
to remove leaves. 

Theorem 1 
The MST algorithm finds a minimum spanning 
tree. 

4.2.1 Proof by contradiction: 
Let  
S be the minimum spanning tree, 
Ck be the nodes connected after iteration k of 
MST has been completed, 
kC be the nodes not connected after iteration k 

of MST has been completed, 
kA be the set of arcs in the minimum spanning 

tree after k iterations of MST algorithm have 
been completed. 
Suppose that the MST algorithm does not yield 
a minimum spanning tree. 

Then the arc chosen at iteration k ( )ka is not 
in S, i.e., .ka S∉  

All arcs in 1kA − are in S, i.e., 1 .kA S− ⊆  
This implies ka S∈ and ka leads from node in 

1kC − to a node 1.kC −  
Replacing ka with ,ka we obtain a spanning 

tree shorter than S.  
The contradiction proves that all arcs 

chosen by the MST must be in S. The MST 
algorithm does indeed find a minimum 
spanning tree. This proof can be found in 
books such as Gutin and Punnen (2006). 

4.3 TSP tree, transformation and arc 
fixing 

TSP tree 
Is an MST without leaves other than the first 
and last nodes. 

Transforming a spanning tree 
Branching can be used to transform any MST 
into TSP.  

Fixing an arc 
The MST algorithm uses 1n −  arcs to connect 
the nodes in the network, but the optimal 
solution of the TSP must have n arcs. This 
problem can be alleviated if one arc which is 
part of the optimal tour is known before the 
problem is solved. Unfortunately this arc is not 
known. In the optimal tour exactly two arcs are 
used in completing a tour at every node. With 
this knowledge arcs can be fixed and the 
necessary branching done so as to remove the 
unwanted leaves from a current minimal 
spanning tree. Let the number of arcs at a node 
i be l.  

 
Figure 3 
Arc fixing  
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Arc fixing way 1: If a single arc is fixed then 

1 2 ... 1.i i ilx x x+ + + =  
There will be a total of l  sub-problems (SB) 

as shown in Figure 4 below. 
 

Figure 4 
Branching at node i  

 

 
 
The sub-problems 1 2, ,..., lSB SB SB  are mutually 
exclusive subsets of .TSP  

1 2 ... lSB SB SB TSP∪ ∪ ∪ =  
For α ≠ β  

SB SBα β∩ =∅  
Fixed value in the hth branch is given by hF  
and is the value of a single arc. Fixing way 1 is 
done before applying the spanning tree 
procedure. The fixed arc is removed from the 

TSP before applying the spanning tree procedure. 
Arc fixing way 2: At every node exactly 

two arcs are used in completing the tour. This 
is because at any node we must have one arc in 
and one arc out for us to complete the tour. 
This is also referred to as the one arc in and 
one arc out rule.  

1 2 ... 2i i ilx x x+ + + =  
Fixing of two arcs at node i will result in 
1
2 ( 1)l l −  sub-problems (SP) or branches. 

 
Figure 5 

Branching at node i  
 

 
 

Where 1
2 ( 1).r l l= −  The number of sub-problems 

(r) formed by branching is given by  

2
!

2!( 2)!
l lr C

l
= =

−
 

( 1) ( 2)!
2!( 2)!

l l l
l

× − × −
=

−
 

( 1)
2

l l −
=  

Also the sub-problems 1 2, ,..., rSB SB SB  are mutu-
ally exclusive subsets of TSP.  

1 2 ... rSB SB SB TSP∪ ∪ ∪ =  
For α β≠  

SB SBα β∩ =∅  
Fixed value in the hth branch is given by hF  and 
is the sum of two arcs. 

Fixing way two is also done before applying 
the spanning tree procedure. The two fixed 
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arcs and an included node i are removed from 
the TSP before applying the spanning tree 
procedure. 

Theorem 2 
Any sub-problem that results in at least one 
leaf in the network structure is infeasible.  

From the definition of a TSP at node i, 
1 2 ... 2.i i ilx x x+ + + =  

This is referred to as the one arc in and one arc 
out rule.  
Proof: A leaf occurs when  

1 2 ... 1.i i ilx x x+ + + =  
This is infeasible to the one arc in and one arc 
out rule. Two arcs are required to pass through 
a node. 

4.4 Removing leaves in an MST  
Besides fixing arcs, branching is also used to 
remove leaves in MST. A branch fathoms  
• if the sub-problem becomes infeasible; 

• if the MST for the sub-problem is also a 
TSP; and 

• or if the objective value given by the sub-
problem is larger than some given lower 
bound (LB). 

4.4.1 Theorem 3 
Any node j is selected for branching  
a) if the number of arcs is greater than two, 

i.e., 1 2 ... 2.j j jtx x x+ + + ≥  
b)  if it has the smallest number of arcs 

emanating from it. 
Where t is the number of arcs emanating from 
node j. 

Proof (a) 
Branching is done to enforce the restriction, 

1 2 ... 2.j j jtx x x+ + + =   
This can be done if the number of arcs is 

two or more, i.e. 1 2 ... 2.j j jtx x x+ + + ≥  

 
Figure 6 

Branching at node j  

 
 

Where  
• SBv  is the sub-problem after the vth iteration; 
• SBvk  is the kth branch at  kth node. 
Similarly the number of sub-problems (vr) 
formed by branching is given by  

( 1)
2

t tvr −
=  

The sub-problems 1 2, ,...,v v vrSB SB SB  are also mutu- 
ally exclusive subsets of SBv .  

1 2 ...v v vr vSB SB SB SB∪ ∪ ∪ =  
For δ ≠ λ  

SB SBδ λ∩ =∅  

Proof (b) 
Let the number of arcs emanating from node i  
be given by ti .The number of arcs at this node 

is directly proportional to the number of sub-
problems ir  generated by branching at node i.  
i.e.    ti  ri  
Suppose we are selecting nodes in an in 
increasing order of the number of arcs i.e. 

r1 ≤ r2 ≤ ...≤ rN  
Where N is the number of nodes in the TSP 
and node 1 has the least number of arcs 
followed by node 2, then node 3 in that order 
up to variable node N. When the algorithm is 
applied the following sub-problems are visited 
in the search process. The worst case is 
assumed in the search process.  
Starting with the most restricted variable 
Stage 1: number of sub-problems visited = r1 ; 
Stage 2: number of sub-problems visited = 1 2r r ; 
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Stage N: number of sub-problems visited 
= 1 2... Nr r r ; 
The total number of sub-problems ( Aτ ) is: 

1 1 2 1 2... ...A Nr r r r r rτ = + + +  
Starting with the least restricted variable 
Stage 1: number of sub-problems visited = Nr ; 
Stage 2: number of sub-problems visited 
= 1N Nr r − ; 
Stage N: number of sub-problems visited 
= 1 1...N Nr r r− ; 
Total number of nodes ( τB ) is: 

1 1 1... ...B N N N N Nτ γ γ γ γ γ γ− −= + + +  
  ∴            

BA ττ ≤                                                                    
It is computationally cheaper to start with node 
with the least number of arcs. 

4.5 The TSP - MST inequality 
The objective value (SUB(MSTo)) of any sub-
problem obtained by solving as MST plus a 
fixed value (Fv) from one of the arcs is less 
than or equal to the optimal tour (SUB(TSPo) 
of the sub-problem. 

( ) ( )o v oSUB MST F SUB TSP+ ≤  
Proof 

( ) ( )o v v o vSUB MST F F SUB TSP F+ − ≤ −  
( ) ( )o o vSUB MST SUB TSP F≤ −  

Let ( ) ,o v sSUB TSP F T− = where a Ts is a spanning 
tree structure.     
Then  ( )o sSUB MST T≤  
If         ( )o sSUB MST T=     
Then Ts is a tree structure without any leaves 
but connects all the nodes. 

 

 This is valid, as SUB(MST) is the smallest 
sum of ( 1)n−  arcs  used to connect all the nodes 
in any network structure where loops are not 
acceptable. Loops are not possible in Ts as one 
arc has been fixed. 

4.6 Network branch and bound 
approach 

Steps of the network branch and bound algo-
rithm are summarized as follows. 

Step 1:  Select the node with the least number 
of arcs (l).   Fix these arcs by branching  into  l  
sub-problems (way 1) or   sub-problems 
(way 2). 

Step 2: Solve each sub-problem generated 
in Step 1 as MST. A sub-problem fathoms  
• if it becomes infeasible; 
• if the MST for the sub-problem is also a 

TSP; and 
• or if the objective value given by the sub-

problem is larger than some given lower 
bound (LB) obtained in an earlier sub-
problem. The optimal tour is given as the 
sub-problem with the overall shortest tour. 

Else go to Step 3. 
Step 3: From those MST with leaves select the 
node associated with the least number of  
arcs. (t). Branch into sub-problems  
and return to Step 2. 

4.7 Optimality 
The solution obtained when using the network 
branch and bound is exact.  

 

Figure 7 
Optimality 
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Where Fj is the fathomed sub-problem and 
µ   is  the number  of   fathomed  sub-problems,  

1 2min[ , ,..., ] ( ).o oTSP F F F SUB MSTµ= =  

4.8 Numerical illustration 
Use the network branch and bound to solve the 
following TSP.  

 
Figure 8 

Main problem 
 

 
 
4.8.1 Solution using the network branch and 

bound method 
The node with the least number of arcs is node 
8. Fixing can be done in two ways. Way 1 is  
to fix either arc 6-8 or arc 7-8. This is done  
by using x68 + x78 =1  to branch into two sub-
problems. Way 2 is done by using 68 78 2x x+ =   
 

to  branch  into  a single  sub-problem 

The two ways will produce the same solution 
and way 2 is arbitrarily selected for this 
illustration. Fixing is done by removing the 
two arcs 6-8 and 7-8 and the included node 8 
from the TSP network diagram. The network 
diagram reduces to 7 nodes and 12 arcs, as 
shown below in Figure 9. 

 
Figure 9 

Fixing arcs 6-8 and 7-8 and removing included node 8, 1 1 2 3.F = + =  

 
 
Applying the minimum spanning tree algorithm, we have Figure 10. 
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Figure 10 
First minimum spanning tree 

 
 

 
          

          
Selecting node 4 as the only leaf we have,      

14 34 46 2.x x x+ + =  
The equation implies the number of sub- 

problems is given by  
3

2
3!

2!(3 1)!
C =

−
 

 

                                          sub-problems. 
Sub-problem 2 
(i.e. 14 34 2x x+ = ) 

 

Figure 11 
Fathomed Sub-problem 2 

 
 

 
 

Sub-problem 3 
(i.e. 14 46 2x x+ = ) 

 
 

Figure 12 
Fathomed Sub-problem 3 
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16 5 2 3 3 4MST F= + + + + + +  

          

          
This  sub-problem  has  fathomed,  since 2F  is 
  

greater than the lower bound (LB) given earlier 
in sub-problem 2. 
Sub-problem 4 
34 46 2x x+ =  

 

Figure 13 
Fathomed sub-problem   

 
 

 

16 2 2 3 3 4MST F= + + + + + +  
          

          

      

The sub-problem has fathomed, since the 
minimum spanning tree does not have leaves. 
The network branch and bound algorithm full 
search tree is presented in Fig 13. 

 

Figure 14 
Full Search tree 
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Figure 15 
Optimal tour 

 
 

Figure 16 
Optimal tour - alternative solution 

 
 

7 
Conclusion 

The algorithm proposed in this paper uses 
spanning tree approaches as sub-problems in 
solving the difficult traveling salesman problem. 
A spanning tree approach is more efficient 
than either the LP based or the assignment sub-
problems. For small TSP models it makes 
sense to use way 2 for fixing arcs since the 
number of branches is given by  This 
number of branches increases rapidly with an 
increase in the number of arcs.  Thus for large 
TSP models it is wise to use way 1 since the 
number of branches is just l. The strength of 
the approach lies in the fact that the number of 

arcs on the various nodes of practical problems 
is not the same. Our strategy is to target those 
nodes that have the smallest number of arcs to 
form branches. At the moment large amounts 
of money are being wasted the world over by 
sales persons, rubbish trucks, delivery or postal 
companies and other organizations because 
exact solutions for routing problems cannot be 
determined and used in acceptable times. The 
network branch and bound approach proposed 
in this paper is still in its early stages of 
development and more effort will be put into 
refining it so that it reaches its full computational 
efficiency level. In future efficiency tests for 
this algorithm will be conducted on standard 
benchmark TSP instances. 
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