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Nicolas Bernoulli suggested the St Petersburg game, nearly 300 years ago, which is widely believed to 
produce a paradox in decision theory. This belief stems from a long standing mathematical error in the 
original calculation of the expected value of the game. This article argues that, in addition to the 
mathematical error, there are also methodological considerations which gave rise to the paradox. This 
article explains these considerations and why because of the modern computer, the same considerations, 
when correctly applied, also demonstrate that no paradox exists. Because of the longstanding belief that a 
paradox exists it is unlikely the mere mathematical correction will end the myth. The article explains why it is 
the methodological correction which will dispel the myth. 
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1 

Introduction 
A game of chance, the St Petersburg game, 
when applied to decision theory involving 
risk1, is believed to produce a paradox, the St 
Petersburg paradox, which has been very 
influential, especially in economics fields 
involving theories of decision making. This 
belief has existed for nearly 300 years. This 
article explains the foundation of this belief, 
why in fact there is no paradox and then 
discusses the methodological considerations 
which gave rise to the belief and why it  
is anticipated the same methodological 
considerations will result in ending that belief. 
This article follows the chronological order in 
which the relevant events occurred. 

2 
Probability theory – the Expected 
Monetary Value rule (EMV) - De 

Fermat and Pascal (1654) 
How risk can be managed including how a 
game of chance can be valued has long drawn 
academic attention. This is of considerable 

practical importance as in the case of insurance 
where risk products routinely need to be 
priced.2 How to price risk resides in academic 
fields such as management science (or 
operations research). It is the application of 
quantitative techniques to assist management 
decision making. Generally when facing risk, 
the decision maker has to make a decision but 
does not know what the appropriate decision 
is. Mathematics, statistics and probability theory 
all can be employed to assist the decision 
maker to arrive at the appropriate decision. It 
can be accepted that these problems are too 
complex for the correct decision to be 
intuitively arrived at, hence the need to resort 
to a discipline like management science. 

Today a standard quantitative method 
employed to arrive at an appropriate decision 
involving risk, in practice, is well-known. The 
probabilities (pi) associated with possible 
outcomes (Ci) are multiplied and these products 
are summed to arrive at a value, referred to as 
the expected value.3 When expressed in 
monetary values, it is referred to as the 
Expected Monetary Value (EMV), with µ 
being used as the symbol for the EMV; thus: 

EMV = ∑pi.Ci = µ (E1) 

Abstract 
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Pierre de Fermat (1601-65) and Blaise Pascal 
(1623-62) are usually credited with formulating 
this solution4 dating back to 1654.5 A simple 
problem can be used to illustrate the calculation. 
The calculation is independent of the unit of 
currency used and over the centuries different 
currencies have been used for the St Petersburg 
game so for simplicity sake only one unit of 
currency is used in the article; the dollar. 
Assume $0m will be paid if on the flip of a 
coin a tail appears and $1m if a head appears. 

The question then is; what is the expected 
value of this game? There is an equal 
probability, ½ on the flip of a coin, of either a 
tail or a head appearing, with associated 
outcomes of $0m and $1m respectively. The 
ranked sequence of probabilities and outcomes 
is thus {½, $0m; ½, $1m,}. Using the method 
described above the EMV is calculated as: 

EMV = ½ . $0m + ½ . $1m = $0.5m ... (E2) 
The EMV calculation can also be shown in 
tabular form as indicated in Table 1, below: 

 
Table 1 

Calculation of the EMV for the flip of a coin 
Series 1 2 Totals 

Payout ($m) 0 1  
Probabilities 1/2 1/2 1 
Contribution ($) 0 0.5 0.5 

    
 
Empirically the game can be played, say, M 
times and an average of these games obtained. 
The average of M games with a sum of S is 
thus: 

𝑆 =    !
!

 .. (E3) 

If an attempt is made to measure the EMV, as 
an empirical average, 𝑆, the empirical value is 
seldom exactly equal to the expected value as 
determined by the expected value formula 
(E1). The reason is simple to understand. If a 
coin is flipped say 10 times, it is unlikely that 
there will be exactly 5 heads and 5 tails, and it 
is even less likely that if a coin is flipped 100 
times that there will be exactly 50 heads and 
50 tails and so on. There is a wide range of 
possible outcomes with µ being simply one of 
those outcomes, albeit the most likely outcome. 
The range of possible outcomes for 𝑆 can be 
described by a distribution which can be deter-
mined from probability theory or simulation. 
Figure 1 indicates the distribution of possible 
outcomes when the game is played M times, 
for three different values of M for an outcome 
of $1m being paid per game each time a head 
appears.6 

Four observations can be made regarding 
Figure 1. First there is a family of distributions 
which are all symmetrical about µ. Second, the 
apex of the distributions, µ = $0.5m is 
constant, that is, it is independent of M, the 

number of games played. Third the probability 
of achieving a result exactly equal to $0.5m 
decreases as M increases; ie the probability 
value at which the apex occurs decreases as M 
increases. Fourth as M increases the dispersion 
(λ), about µ, decreases. Thus the empirical 
value, 𝑆, for any set of games played M times 
and its relationship to µ, the apex of the 
distribution, is more accurately described as: 
𝑆 (M) = µ (independent of M) + λ'/2 

(dependent on M and can be positive or 
negative) .. (E4) 

Where λ'/2 is the difference between the 
empirical average and the expected value, µ, 
achieved after the game is played M times for 
any particular series of M games. 

The value of dispersion λ in Figure 1, can be 
pre-selected, say, to include a predetermined 
area under the distribution curve, say 84 per 
cent in which case it is anticipated that λ'/2, the 
empirical result from any series of games 
played M times, usually will produce a value 
less than λ/2. As M tends to infinity, the 
probability of achieving exactly µ tends to zero 
and λ (M), the dispersion with a pre-selected 
area under the distribution, also tends to zero. 
In other words the probability of the EMV 
equalling µ tends to zero and of being anything 
but µ also tends to zero. In this case it can be 
said that the flipping of a coin is subject to 
both the Central Limit Theorem and the Law 
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of Large Numbers. It is subject to the first 
because the distribution is symmetrical, about 
a constant µ, and the second because the 
dispersion tends to zero as M tends to infinity. 
And thus when, in practice, the equation EMV 
= µ is used to solve problems there are 
unstated and more often than not forgotten 
assumptions. These are that Central Limit 

Theorem and Law of Large numbers apply and 
that a large number of games are involved. 
These assumptions usually produce a practical 
outcome approximating µ which is independent 
of M. These assumptions do not hold for all 
complex games (Liebovitch & Scheurle, 2000). 
As is shown below, these assumptions also do 
not hold for the St Petersburg game. 

 
Figure 1 

Probability distribution of a coin flipping game played 10; 50; 100 times 

Having concluded that mathematics, statistics 
and probability theory can assist the decision 
maker, the enquiry becomes, what are the 
questions for which the decision maker requires 
answers? A casino operator, for example, will 
want to know if a specific prize is offered for a 
particular game, say an offer $1m for the coin 
flipping game, what amount should gamblers 
be asked to wager to play the game so as to 
produce an expected profit for the casino? This 
question is usually posed as what is the fair 
value of the game? The fair value, in this case 
is the breakeven value. It is the amount which 
if paid by gamblers to play games, then the 
sum of payments received by the casino as 
income will equal the sum of amounts paid by 
the casino to gamblers. Thus take as an 

example the above flipping of the coin game. 
At $0.5m per game for a 100 games gamblers 
will pay $50m to the casino and the casino 
expects to pay back $50m to gamblers. The net 
expected profit of the casino is thus zero. 

There is a second question which can be 
asked; and that is, what amount is it anticipated 
that a gambler will be Willing To Pay (WTP), 
to play a particular game? It can be accepted 
that when dealing with complex games of 
chance that gamblers cannot intuitively determine 
the fair value (break-even value) of the game, 
but, the fair value can in many cases be 
calculated by applying probability theory. 
Generally, as a rule of thumb, it is anticipated 
that gamblers should be Willing To Pay (WTP) 
an amount to the same order as the Fair Value, 
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or expected value, of the game. Answering 
questions about gamblers’ Willingness To Pay 
resides more centrally in fields such as 
behavioural economics, or consumer behaviour, 
or psychology, not management science or 
operations research. How gamblers behave, 
usually cannot be determined objectively by 
merely examining the game. The decisions, 
however, can be observed to arrive at answers. 
There may well be a sort of weak link between 
the management science objective fair value 
and the behavioural economics WTP decisions 
which is the rule of thumb mentioned above. It 
is anticipated, from observation, that gamblers 
should be Willing to Pay amounts in the region 
predicated by the EMV. 

3 
The birth of the St Petersburg game 

- Nicolas Bernoulli  
9th September 1713 

With this background the origins of the  
St Petersburg game is examined. The above 
observations relate to the simple game of 
flipping a coin but the question then becomes: 

Can the EMV theory developed by Pascal and 
de Fermat be used with confidence for all 
games of chance? This was the issue which 
concerned the Swiss mathematician Nicolas 
Bernoulli (1687-1759)7. Nicolas devised five 
games which, in his opinion, clearly demonstrated 
that gamblers would not make decisions in line 
with the values determined by the EMV 
formula. Gamblers’ WTP did not in his view 
coincide with the fair value of the game. It 
should be noted that his enquiry had shifted 
from managerial science to behavioural 
economics. He sent these games in a letter 
dated the 9th September 1713 to the French 
mathematician Pierre Rémond de Montmort 
(1678-1719)8. One of these games, once 
simplified, is what today is called the St 
Petersburg game. In this game a coin is flipped 
until a head appears whereupon the game 
ceases. The payout starts with $1 and doubles 
with each flip of the coin. If it appears at the jth 
flip an amount of $2 j-1 is paid. The traditional 
EMV for the game can be determined from the 
method described above giving the result 
indicated in Table 2. 

 
Table 2 

Traditional calculation of the EMV of the St Petersburg game 
Series 1 2 3 4 … j Totals 

Payout ($) 20 21 22 23 … 2j-l  
Probabilities 2-1 2-2 2-3 2-4 … 2-j 1 
Contribution ($) 1/2 1/2 1/2 1/2 … 1/2 Infinite 

        
 
This gives the traditional solution of: 

EMV = ½ + ½ + ½ + ... (E5) 
or 
EMV = ∞ ... (E6) 

Thus according to the traditional solution the 
expected value of the St Petersburg game is 
infinite. However, it is accepted that ‘no 
prudent … man would be willing to pay even a 
small number of shillings [dollars]’ to play the 
St Petersburg game (Todhunter, 1865:220). 
The traditional managerial science solution to 
the St Petersburg game indicates that the fair 
value of the game is infinite; suggesting that 
gamblers should be willing to pay a substantial 
amount, say $1m per game, but a behavioural 
economics observation indicates that gamblers 

are only willing to pay modest amounts. 
Therein seemingly lies the paradox as explained 
by Todhunter (1865:220), ‘The paradox then is 
that the mathematical theory is apparently 
directly opposed to the dictates of common 
sense.’ Theory and behavioural observation 
thus point in different directions. That is the 
apparent paradox in decision theory.9 

4  
“Cardinal” utility solution to the  

St Petersburg paradox -  
Daniel Bernoulli 1738 

Montmort, exchanged correspondence with 
Nicolas but in the end did not resolve Nicolas’ 
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problems. In a letter dated 22nd March 1715 he 
indicated that he had already written 16 pages 
but had not completed the task and doubted if 
he had the strength to do so. In December 1716 
in a letter it is clear he had given up. He died 
shortly thereafter in 1719. But Nicolas’ letter 
had reached others who suggested solutions to 
the paradox. The game reached Nicolas’ cousin 
Daniel Bernoulli (1700-82) who included the 
game in a paper which was published in the 
1738 edition of the Papers of the Imperial 
Academy of the Sciences in Petersburg. Daniel 
Bernoulli (1738/1954) accepted the traditional 
solution, EMV = ∞ to be correct and turned his 
attention from the mathematics of the game  
to behavioural economics and set about 
explaining the behaviour of gamblers being 
only prepared to offer modest amounts. He 
suggested gamblers do not make a linear 
evaluation of their possible gains but evaluate 
possible incremental gains in terms of what he 
called their “moral expectation.” He argued 
that individuals who add additional incremental 
wealth to their current fortunes would value 
the increment as being inversely proportional 
to their existing wealth. This represents what 
today is called diminishing marginal utility of 
wealth. This function he suggested could be 
described by a natural log function. Thus 
instead of multi-plying the probabilities and 
linear gains, he argued that probabilities should 
be multiplied by the moral expectation of 
incremental wealth. This approach produces 
what today is called the expected utility value 
(EUV) theory. 

EUV = ∑pi U(Wi) or ∑pi ln(Wi/Wo) … (E7) 
Using his new theory he worked out how much 
gamblers would be prepared to gamble as10: 

G = ∏ (Wo+2j-1)1/2^j - Wo … (E8) 
This gives an amount of $2 where Wo = 0; and 
an amount of $3 where Wo = 10, and an 
amount of $6 Wo = $1 000 and so on 
(Todhunter, 1865:220). This modest amount in 
is line with what was thought gamblers would 
be willing to pay to play the game. Other 
solutions, at the time, included one from 
Cramer who suggested a gambler would be 
willing to pay $13, again a modest sum. 

These low outcomes derived from the moral 
expectation calculations were consistent with 
what was thought gamblers would be prepared 

to offer to play the game. And hence Daniel 
Bernoulli concluded that a solution to the St 
Petersburg paradox had been found.11  

5 
Ordinal utility: Adam Smith (1776), 
David Ricardo (1817), and Jeremy 

Bentham (1748-1832) et al. 
Daniel Bernoulli’s paper appeared to gather 
dust as a different thread of utility theory 
moved to centre stage in economics but this 
thread was derived from another source. Adam 
Smith in his Wealth of Nations drew attention 
to the fact that a distinction existed between 
value in exchange (price) and value in use 
(usefulness or utility). As illustration he used 
diamonds that are very expensive. They have a 
substantial value in exchange, but they are not 
very useful. On the other hand water is 
inexpensive but of great value in use. This 
enigmatic distinction however proved difficult 
to convert into a comprehensive economic 
theory despite the efforts of many of the great 
economists of the time. It was not until the 
1870s that three economists, William Stanley 
Jevons (1835-1882), Leon Walras (1834-1910) 
and Carl Menger (1840-1921) working separately 
prompted what is known as the marginal 
revolution. By the turn of the century it was 
accepted that utility was difficult to measure 
and it was impossible to make interpersonal 
comparisons. A cardinal utility theory appeared 
to be elusive and it was reluctantly accepted 
that economics would have to be largely 
content with ordinal utility12 and preference 
curves were introduced to assist analysis. 

6 
Rediscovery of Daniel Bernoulli’s 
cardinal utility - Von Neumann  

and Morgenstern (1947) 
Interest in Bernoulli’s “cardinal” expected utility 
hypothesis was rekindled by the publication of 
John von Neumann (mathematician) and Oskar 
Morgenstern’s (economist) Theory of Games 
and Economic Behaviour (1947). They 
provided a method for individuals to reveal 
their certainty equivalents13, and by incorpo-
rating ordinal utility placed economics on the 
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promised utility foundation which had eluded 
economists since Adam Smith’s diamond-
water enigma.14 Bernoulli’s original 1738 
paper then became a matter of considerable 
importance but since it was written in Latin it 
was largely inaccessible to readers. It was 
translated for the first time into English in 
1954. And thus the St Petersburg paradox 
moved centre stage. 

7 
Resolving the paradox – correcting 

the original mathematical error 
Strangely in the 300 years which have elapsed 
since Nicolas Bernoulli set out the game 
virtually no-one questioned if the traditional 
derivation of the linear expected monetary 
value of the game is correct15. That a problem 
exists with the traditional solution is clear from 
the following quotation which appears in 
Daniel Bernoulli’s original 1738 paper16: 

 “The number of cases [M] to be considered 
here is infinite: in one half (1/2) of the cases 
[M] the game will end at the first throw, in one 
quarter (1/22) of the cases [M] it will conclude 
at the second, in an eighth (1/23) part of the 
cases [M] with the third, in a sixteenth (1/24) 
part [M] with the fourth, and so on … ad 
infinitum.”  

That this statement contains an error was 
noted by Karl Menger (1902-85)17 who was 
the technical consultant to the 1954 translation 
of Bernoulli’s paper from Latin to English. He 
noted: 

“Since the number of cases is infinite, it  
is impossible to speak about one half of  
the cases, one quarter of the cases, etc., and  
the letter [M] in Bernoulli‘s argument is 
meaningless.”  

Menger did not realise the significance of 
the error and did not fully correct it. It is a 
simple matter to correct since M cannot be 
infinite to derive a solution, M must be 
allocated a finite value say M=2k. If 
Bernoulli’s method is applied to these games 
then 2k-1 games end after the first flip, 2k-2 
games end after the second flip and so on. If 2k 
games are played then the following series of 
games is expected to evolve: 

2k-1 + 2k-2 + 2k-3 ... 2k-k … (E9) 

The expected length of the above series is only 
k in length, not infinite. Since each term in the 
series contributes ½ to the EMV of the above 
series of games, the above series produces a 
total of k/2. 

To complete the determination of the 
expected value of M=2k games it must be 
established if all the games are expected to be 
within the above series of k terms. It must be 
checked to see if all the games are accounted 
for in the series k in length. The above series 
(E9) is a geometric progression which is easily 
summed. The sum of series (E9) is 2k - 1. Thus 
if 2k games are played one game is expected to 
end outside of the series which is k in length. 
This one game which progresses beyond the kth 
term can be any game in the series and can end 
anywhere after the kth term. If it ends at the kth 
+ 1 term it will contribute 1 to the EMV of the 
games and there is a 50 per cent probability 
that it will end at the k+1 term (Vivian 2003). 
If it ends anywhere further from the kth + 1 
term it will contribute a greater value to the 
EMV but there is a declining probability that 
the game will progress further away for the kth 

term. This additional amount which is 
contributed to the EMV from the game which 
ends after the k+1 term can be represented by 
λ, the value of which depends on where the 
game in fact ends beyond the k+1 term. 

The EMV of playing St Petersburg games 
once Daniel Bernoulli’s error is corrected is 
thus: 

EMV = (k/2 + 1) + λ … (E10) 
or if expressed in the usual format of µ + λ  
EMV (M = 2k) = µ + λ ... (E11) 

Where µ = (k/2 + 1) and is as before the apex 
of the distribution in this case the distribution 
of St Petersburg games as indicated in Figure 
2. The values of λ with associated probabilities 
are as follows: 
λ = {½, 0; ½2, 21; ½3, 22 … } 

In the St Petersburg game µ = (k/2 + 1) 
represents the outcome at the apex of the 
distribution with a confidence level of 50 per 
cent. In the St Petersburg game µ is not a 
constant, it is dependent of M the number of 
games played. This differs from the simple 
game of flipping a coin discussed above which 
produces µ, a constant, and thus independent 
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of M. In the St Petersburg game λ on the other 
hand is independent of M whereas in the game 
of flipping of a coin λ decreases as M 
increases. The distribution of the St Petersburg 
game does not conform to either the Central 
Limit Theorem or the Law of Large Numbers. 
Even if the St Petersburg game is played an 

enormous number of times the expected value 
is relatively modest. Thus for example if the 
game is played 264 (18 446 744 073 709 600 000) 
times the expected value is a mere $33 at a 
confidence level of 50 per cent. This expected 
value is nowhere near as large a figure as 
anticipated by the traditional solution. 

 
Figure 2 

Probability distribution of the St Petersburg game 

 
 

If the correct derivation of the EMV is carried 
out then the expected value of the game 
becomes finite, modest, and subject to 
predicable levels of confidence. The modest 
figure is in line with what it is thought 
gamblers would be willing to pay to play the 
game. With the correct derivation, there is no 
paradox.18 Once the error is realised, corrected 
and the correct value determined, and it 
becomes clear that no paradox exists it can be 
anticipated that the view that the St Petersburg 
game leads to a paradox will disappear; the 
myth that the St Petersburg game produces a 
paradox in decision theory will be dispelled. 
But entrenched views are resilient and the 
myth did not disappear. So the question 
becomes why should the belief in the existence 
of a paradox cease at this point of time? This 
article attempts to answer this question. The 
answer is to be found in a methodological twist 
to the story of the paradox which is now 
considered. 

8 
The methodological twist dispelling 

the myth of the paradox 
The methodological twist involves recalling 
the influential debate about what is the 
appropriate methodology to arrive at the truth. 
This debate started a few decades before the 
birth of the paradox, was influential at the birth 
of the paradox and has continued ever since19. 
Two fundamental methodologies can be identified; 
the older being Aristotle’s Organon (deductive 
method). This ancient method was disputed 
and rejected by Sir Francis Bacon in his Novum 
Organum (observation - inductive method)20. 
The switch from the one to the other 
dominated scientific enquiry when Nicolas was 
writing the letter to Montmort and no doubt 
played a significant part in the reason for him 
formulating the problems in the first place. 
When any new theory is advanced how is the 
truth of this theory to be established? In terms 
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of Aristotle’s Organon truth could be found 
from reason or logic. Sir Francis rejected this 
as being sufficient to validate any theory. 
Validity had to be established empirically; through 
observation preferably an observation of nature. 
Pre-1620: Aristotle’s Organon 
Before 1620 the dominant methodology was 
Aristotle’s Organon. This can be described as 
the deductive (syllogistic) or philosophical 
method of logic. This method rests strongly on 
belief and thus has a natural affinity with 
religion. The 1500s and 1600s brought the 
limitation of this methodology into focus. 

For what seemed at the time to be good 
reasons the almost universally accepted view, 
was that the sun rotated round the earth, the 
Ptolemaic system.21 This view also appeared to 
have Biblical support.22 This belief formed part 
of the Aristotelian system of an unchanging 
celestial realm. This view was a product  
of Organon. However, Nicolaus Copernicus 
(1473-1543), a Polish astronomer began to 
form a different view, the heliocentric view, 
that it was the earth and the other planets 
which rotated around the sun. He ‘sought, with 
scanty instrumental means, to test by 
observation the truth it embodied.’23 His views 
were published contemporaneously with his 
death as De Revolutionibus orbium coelestrium 
(libri vi) (1543)24. Copernicus had found a new 
basis to discover the truth; observation of 
nature, not deduction. The tide however turned 
strongly against Copernicus’ heliocentric view. 
In 1615 Roman Inquisition consultants examined 
the question and pronounced the Copernican 
theory to be heretical. By this time Galileo 
(1564-1642), an Italian, and others became 
convinced that Copernicus’ view was correct 
and with accepting this view that truth could 
be found from observation, measurement and 
the application of the mathematical sciences. 
He published his views in The Assayer (1623). 
In 1630 he published his Dialogue Concerning 
the Two Chief World Systems (Ptolemaic and 
Copernican) in which he inadvertently insulted 
and ridiculed the Pope. The reaction was swift. 
He was brought before the Roman Inquisition 
and sentenced to lifelong house arrest. 
Sir Francis Bacon’s Novum Organum (1620) 
To a perceptive observer it was clear that a 
new important method of discovering truth had 

been found, observation, specifically about 
nature, and then progression via the inductive 
method. This was the so-called scientific 
method. The perceptive observer in this case 
was Sir Francis Bacon, who in England, in 
1620 published his views in his Novum 
Organum. He specifically rejected Aristotle’s 
Organon method. He stated the essence of this 
new method is in the opening paragraph of the 
Novum: 

 ‘Man, as the ... interpreter of nature ... 
understands as much as his observations ... 
permit him and neither knows nor is capable of 
more’  

Knowledge, about nature, comes from 
making observations of nature which man can 
understand, explain and interpret. Observation 
of nature was where the truth was to be found. 
In doing so man is not to be bound or 
encumbered by preconceived conclusions 
arrived at from a purely deductive process. The 
new scientific age was ushered in as relying 
merely on Aristotle’s Organon deductive 
system was rejected. This new objective, 
impersonal observation based system began to 
dominate all scientific enquiries. Any 
conclusions which were arrived at had to be 
validated by observation of nature. 

8.1  The natural world of Nicolas and 
Daniel Bernoulli in 1713 and 1730 

Understanding this debate, then, the question 
becomes what was the natural world 
observation sought by Nicolas and Daniel 
Bernoulli in the early 1700s to validate by 
observation the correctness of the expected 
monetary value decision theory? A new theory 
had evolved, the expected monetary value 
theory, which was to be applied as a solution 
to making decisions involving risk. To decide 
if this theory was correct it had to be validated 
by observation. As pointed out above there are 
two basic issues involved in games of chance, 
the study of the game itself (management 
science) and the study of the behaviour of the 
gambler, the decision maker, (behavioural 
economics). In 1713 nothing could be 
observed about the game itself to validate the 
correctness of the theory. All that could be 
observed was the decision of the decision 
maker. Daniel decided, from observation, that 
decision makers do not make decisions as 
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predicted by the expected value theory when 
applied to the St Petersburg game and hence 
because of this observation the EMV as a 
general decision theory had to be rejected. 
That he rejected the EMV as a general theory 
is clear from the title of his paper and his 
opening remarks to his paper. His title is 
“Exposition of a new theory of the 
measurement of risk” and in paragraph 3 he 
states emphatically ‘The rule [EMV] must be 
discarded.’ He applied the Novum observation 
methodology to arrive at this conclusion. He 
argued that from observation of the behaviour 
of gamblers that it was clear that people do not 
make decisions in terms of the EMV rule. 
Therefore since observation trumps hypothesis 
the EMV rule had to be rejected. The EMV  
of the St Petersburg game, as determined 
mathematically at the time was infinite, but the 
decision maker did not, in fact, make decisions 
as predicted by the calculation of the EMV of 
the game. Thus he concluded that the EMV 
rule had to be discarded. Having created a new 
solution, his diminishing marginal utility of 
wealth he triumphantly proclaimed in the 
Novum observation terminology: 

 ‘Since all our propositions harmonize 
perfectly with experience [Novum] it would be 
wrong to neglect them as abstractions resting 
upon precarious hypotheses [Organon]’ 

Observation had triumphed over hypo-
theses. Of course his utility solution says 
nothing about the St Petersburg game itself. It 
deals exclusively with observations and 
explanations about decision makers. What 
decision makers do however is not natural 
world observation such as observing the actual 
outcomes when games are played. It is thus the 
application of the Novum observation metho-
dology, to gamblers and not the game, which 
produced the utility solution to the St 
Petersburg game. The methodology produced 
the paradox. It does not appear as if anyone 
took a different but equally possible inter-
pretation of the observations of the behaviour 
of gamblers and that is that gamblers’ 
decisions were pointing to the fact that the 
mathematical solution to the game was 
incorrect and if correctly determined it would 

harmonise with the decisions of gamblers. 
Some comments are directed at his 

approach of observing gamblers and not the 
game. First in “observing” gamblers Daniel 
was clearly working in the field of behavioural 
economics and not that of the management 
science. This was different to what Pascal and 
de Fermat were dealing with. They were 
concerned with management science not 
behavioural economics. Daniel says nothing 
about the game itself. In fact a purpose of his 
paper was to reject the notion that gamblers 
look only at the game; that is a central thesis of 
his paper. He concentrated on the observed 
behaviour of gamblers. Second his observation 
about gamblers is not an observation of nature 
but about human behaviour. The Novem 
methodology was focused primarily on 
observing nature. It is not clear that observing 
human behaviour falls within the purview of 
the Novum methodology at all. Finally 
although he refers to the modest amounts that 
gamblers are willing to pay his source on this 
point is not clear. It does not appear if any 
experiments were carried out to determine the 
amounts gamblers are willing to pay to play St 
Petersburg games until quite recently (Cox, 
Vjollca & Bodo, 2009; Hayden & Platt, 2009). 

8.2 The natural world of 2013 
In 2013 things are very different. With the 
advent of the modern computer outcomes  
from playing St Petersburg games can easily 
be observed simply by simulating games. 
Observations of nature are now available. 
What happens when games are simulated is 
indicated below. Table 3 indicates the empirical 
EMV determined from simulating St Petersburg 
games when played from 1 game through to 
1 048 576 games or a total of 2 097 151 
games.25 

The results are also shown graphically in 
Figure 3 with a trend line added. These 
outcomes are, as noted, observations of nature 
unlike the observations of gamblers which 
involve observing human action or behaviour. 
The following observations can be made about 
the outcomes recorded in Table 3 and Figure 3. 
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Table 3 
Simulation of St Petersburg game. Total of 2 097 151 games played 

2k 
k 

M number 
of games 

played 

Expected values as predicted by formula (Vivian 2003) Empirical 
Bernoulli (1738)'s 
expected value of, 
say, $1 000 000 as 
a proxy for infinity 

Confidence level (λ) 
EMV 

50% 75% 87,5% 93,75% 
($) ($) ($) ($) ($) 

0   1 1,0 2,0 4,0 8,0 1,000 1 000 000  

1   2 1,5 2,5 4,5 8,5 1,000 1 000 000  

2   4 2,0 3,0 5,0 9,0 3,000 1 000 000  

3   8 2,5 3,5 5,5 9,5 5,500 1 000 000  

4   16 3,0 4,0 6,0 10,0 1,938 1 000 000  

5   32 3,5 4,5 6,5 10,5 3,188 1 000 000  

6   64 4,0 5,0 7,0 11,0 5,203 1 000 000  

7   128 4,5 5,5 7,5 11,5 4,617 1 000 000  

8   256 5,0 6,0 8,0 12,0 4,223 1 000 000  

9   512 5,5 6,5 8,5 12,5 8,096 1 000 000  

10  1 024 6,0 7,0 9,0 13,0 6,844 1 000 000  

11  2 048 6,5 7,5 9,5 13,5 6,901 1 000 000  

12  4 096 7,0 8,0 10,0 14,0 6,256 1 000 000  

13  8 192 7,5 8,5 10,5 14,5 6,395 1 000 000  

14  16 384 8,0 9,0 11,0 15,0 6,888 1 000 000  

15  32 768 8,5 9,5 11,5 15,5 9,589 1 000 000  

16  65 536 9,0 10,0 12,0 16,0 7,929 1 000 000  

17  131 072 9,5 10,5 12,5 16,5 10,545 1 000 000  

18  262 144 10,0 11,0 13,0 17,0 9,345 1 000 000  

19  524 288 10,5 11,5 13,5 17,5 11,408 1 000 000  

20 1 048 576 11,0 12,0 14,0 18,0 11,243 1 000 000  

1) No series of games produced a large 
empirical EMV. The empirical EMVs 
ranged from 1 to 11.408. The notion that 
St Petersburg games produces large 
average values, say a mere R1 000 000 per 
game can be discounted as something 
which simply is not observed in nature. 

2) This range of empirical outcomes is in line 
with amounts which gamblers are thought 
to be willing to play the game. There is no 
decision theory paradox. 

3) From Figure 3 it is clear that as the number 
of games increase, the trend produces a line 
which is upward sloping. Unlike with 
flipping a coin, the EMV is not constant, 
ie, it is dependent on M the number of 
games played. Neither the Central Limit 
Theorem nor the Law of Large Numbers 
apply to the St Petersburg game. 

4) The results are consistent with the results 
predicted by the formula EMV = (k/2 + 1) 
+ λ. 

5) The observation made by Daniel Bernoulli’s 
(1738/1954) with respect to his utility 
solution is equally true for the empirical 
results. The empirical results harmonise 
with the theoretical results. 

A further simulation was carried out this time 
with 226 games being played, ie 268 435 456 
games. The predicted and empirical results are 
summarized in Table 4. The expected length of 
the series is not the traditional infinite series 
but a series which is expected to contain 29 
terms; ie k+1 or 28+1. The empirical length 
consisted of 25 terms. The expected value is 
not Bernoulli’s infinite value (or a mere 
$1 000 000 per game, if you like) but a mere 
$15 (ie k/2+1) at a 50 percent confidence level. 
The empirical EMV was $17.02. Observation 
about the game and theoretical predictions 
harmonise. The detailed results of this 
simulation are indicated in Table 5. 
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Figure 3 
Empirical and expected EMV's of the St Petersburg game 

 
 

Table 4 
Expected and empirical results 2^28 games 

Number of games played 268 435 456 

Two raised to the power of: 28 

Expected value: 50 % confidence level 15,000 

Expected Value: Empirical 17,020 

Length of series: Expected 29 

Length of series: Empirical 25 

 
Table 5 

Results when 2^28 games are played (268 435 456 games) 

 
 
 

Empirical 
Heads 

 

Expected 
Variance 
λ'/2 

Empirical Payout Empirical Expected 
Heads 

Probabilities ($) Contribution 
to EMV 

Contribution 
to EMV 50% cl 

Total 268 435 456 268 435 456 1 1,000   17,020 15 

1 134 217 760 134 217 728 31 0,500 1 0,500 0,500 

2 67 108 768 67 108 864 -96 0,250 2 0,500 0,500 

3 33 555 680 33 554 432 1248 0,125 4 0,500 0,500 

4 16 773 216 16 777 216 -4000 0,062 8 0,500 0,500 

5 8 390 976 8 388 608 2368 0,031 16 0,500 0,500 

6 4 195 936 4 194 304 1632 0,016 32 0,500 0,500 

7 2 096 288 2 097 152 -864 0,008 64 0,500 0,500 

8 1 048 608 1 048 576 32 0,004 128 0,500 0,500 

9 522 880 524 288 -1408 0,002 256 0,499 0,500 

10 262 592 262 144 448 0,001 512 0,501 0,500 

11 130 240 131 072 -832 0,000 1 024 0,497 0,500 

12 68 352 65 536 2816 0,000 2 048 0,521 0,500 
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13 31 744 32 768 -1024 0,000 4 096 0,484 0,500 

14 16 192 16 384 -192 0,000 8 192 0,494 0,500 

15 8 320 8 192 128 0,000 16 384 0,508 0,500 

16 4 288 4 096 192 0,000 32 768 0,523 0,500 

17 2 080 2 048 32 0,000 65 536 0,508 0,500 

18 864 1 024 -160 0,000 131 072 0,422 0,500 

19 256 512 -256 0,000 262 144 0,250 0,500 

20 160 256 -96 0,000 524 288 0,313 0,500 

21 64 128 -64 0,000 1 048 576 0,250 0,500 

22 32 64 -32 0,000 2 097 152 0,250 0,500 

23 64 32 32 0,000 4 194 304 1,000 0,500 

24 64 16 48 0,000 8 388 608 2,000 0,500 

25 0 8 -8 0,000 16 777 216 0,000 0,500 

26 32 4 28 0,000 33 554 432 4,000 0,500 

27 0 2 -2 0,000 67 108 864 0,000 0,500 

28 0 1 -1 0,000 134 217 728 0,000 0,500 

29 0 1 1 0,000 268 435 456 0,000 1,000 

30 0 0 0 0,000 536 870 912 0,000 0,000 

31 0 0 0 0,000 1 073 741 824 0,000 0,000 

 
9 

Conclusion 
The desktop computer enables any schoolboy 
nowadays to simulate the St Petersburg game 
and the game is increasingly being simulated.27 
Anyone observing the outcomes of these 
simulations will notice that the outcomes are 
never very large as predicted by Bernoulli. It is 
now simply a matter of time before Bernoulli’s 
solution that the St Petersburg game has an 
infinite expected value even when a finite 
number of games are played will be rejected. 
The view that the St Petersburg game produces 
a paradox in decision theory likewise will be 
abandoned, not because it is easy to prove 
mathematically that that view is incorrect but 
for the same reason that we no longer believe 
the earth is flat or the sun rotates around the 
earth. We can nowadays observe that these 
things are not true. We can observe that the St 
Petersburg game does not produce large 
expected outcomes and hence does not produce 
a decision theory paradox. Observations from 
results of nature will dispel the myth of the St 
Petersburg paradox as observation has 
dispelled other myths about nature. It is now 
just a matter of time. If the Bernoullis had the 
modern computer the paradox would never 
have seen the light of day. On the other hand, 
no doubt, the St Petersburg game will be of 

continued interest for other reasons including 
the field of behavioural economics. 

10 
Postscript – prior simulations of  

St Petersburg games 
The thesis of the article is that as the St 
Petersburg game is being simulated, 
increasingly, so the traditional view that a 
paradox exists will be abandoned. It would be 
incorrect, however, to believe that the St 
Petersburg game has not been simulated. For 
the sake of completeness this postscript briefly 
discusses some of the attempts which have 
been made to simulate the St Petersburg game. 
As will be seen the early simulations led to the 
conclusion that no paradox existed. 

Buffon (1777) and earlier simulations 
Buffon (1777) appeared to be the first to use 
simulations to validate probability theory 
which he applied to the St Petersburg game 
(Stigler, 1991). Buffon’s original work was 
published in French which has conveniently, 
for the first time recently, been translated into 
English and is now generally available (Hey, 
Neugebauer & Pasca, 2010). Buffon hired a 
child to flip a coin and recorded the results. 
The child played 2 048 games. This experiment 
has been widely discussed (including De 
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Morgan, 1838, De Morgan, 1847, De Morgan, 
1915, Moritz, 1923; Stigler, 1991, Aase, 2001). 
De Morgan (1847) added a further 2 048 
games to give a total of 4 096 games (212 
games) and the second edition of his work 
published in 1915 added even more games. 
Buffon’s 2 048 games produced an average of 
$5 per game. Later an average of $15.4 was 
determined for the 4 096 games. These 
combined results were discussed by Moritz 
(1923). Moritz accepted that if a game is 
played 2k times it produces what he calls a 
theoretical value of k/2 and compared this 
value with the average from the actual playing 
of the game taken from Buffon’s simulation. 
He reproduces Buffon and De Morgan’s 
(1847) empirical results on a table on page 60 
of his article.28 Buffon’s simulations, now 
augmented by that of others produced modest 
average values which Moritz noted increased 
as the numbers of games were played (Moritz, 
1923:61). Moritz concluded that if 2k games 
are played this should yield an average of k/2 
per game. He then concluded that in fact any 
pre-selected average for a series of games 
could be achieved simply by playing the 
requisite number of games but since it takes 
time to play the requisite number of games, he 
noted that insufficient time may exist to 
achieve the outcome. He noted for example 
that to secure an average of $18 would require 
236 games which he pointed out exceeds the 
number of seconds in the Christian era. This 
was of course before the age of the computer. 
In the face of the results produced by 
simulation, Moritz concluded that the 
traditional infinite solution is meaningless 
(Moritz, 1923: 61). It is suggested that this 
view is too extreme. More correctly the 
traditional view is a special case of being 
correct where an infinite number of games can 
be played, which is of little practical 
significance. A more appropriate comment 
would have been to note that the central limit 
theorem does not apply and thus that the 
expected value is dependent on the number of 
games played. 

It is clear that mathematicians at that time 
had rejected the idea that the St Petersburg 
game produces a paradox. Feller (1945:302), 
without reference to Buffon’s experiment, 

specifically dismissed the idea that the St 
Petersburg game produced a paradox: 

 ‘instead of a paradox we reach the 
conclusion that the price should depend on k, 
that is to say [the price will] vary as the 
number of trials increases.’  

Feller (1968) repeated this view in his 
leading textbook. 

It should be clear from the propositions set 
out in this article, that mathematicians in the 
early to mid-1900s accepted that the average 
value of games played is a function of the 
number of games played, is finite and modest 
and no paradox exists. . These conclusions 
seemed not to have been noticed, or, were 
forgotten after the publication of Von 
Neumann and Morgenstern’s (1947) textbook 
on game theory. These conclusions appear to 
have remained forgotten ever since despite 
more recent simulations. 

Ceasar (1984) and more recent simulations 
More recently Ceasar (1984) simulated St 
Petersburg games using a computer, producing 
results for the average values and continued to 
produce results for Bernoulli’s and Cramer’s 
utility solutions. In his simulations the number 
of games were incremented from 100 to 
20 000. He produced a graph for the average 
value which indicates modest finite outcomes 
increasing in value as the number of games 
increase. He demonstrated a wide discrepancy 
between the mathematical average and the 
utility solutions. The thrust of his article was to 
demonstrate that the computer could be used to 
simulate St Petersburg games and to compare 
mathematical and utility solutions. The need to 
resort to manual flipping of the coin was 
passed. The age of the computer had arrived. 
The article contains little theoretical discussion. 

Russon and Chang (1992) 
Russon and Chang (1992) simulate St Petersburg 
games and find such a wide discrepancy 
between the simulated average values and 
traditional predicted value that they suggest a 
‘practical average’ be adopted. Vivian (2004) 
re-examined their argument and concluded that 
if the expected value is correctly determined 
then theory and simulation could be reconciled. 
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Klyve and Lauren (2011) 
The above authors simulate St Petersburg 
games from 1 000 to 1 000 000 times, 
producing finite, modest outcomes generally 
increasing as the number of games increase. 
They point out that the average per-game 
winnings depends rather strongly on the 
number of games played. This, they point out 
is however, well-known. They attempt to 
produce a distribution of the St Petersburg 
game based on Buffon’s 2 048 games and end 
up with a strange distribution which they admit 
they are at a loss to explain. 

Behavioural economics simulations 
A large number of simulations has been carried 
out to test decision makers’ Willingness to 
Pay, many of which involve the St Petersburg 
game. A discussion of these simulations falls 
outside the scope of this article but the article 
by Neugebauer 2010 can be consulted for a 

detailed discussion on this line of research. 

Conclusion re simulations 
It is clear that once St Petersburg games are 
simulated, certain conclusions become ines-
capable; viz the average values are always 
finite, modest and increase as increasing 
numbers of games are played. These obser-
vations are at variance with the traditional 
single value infinite expected value solution to 
the game. Oddly in the early 1900s once the 
game was simulated, the idea that the game 
produced a paradox was rejected, which 
conclusion seems to have been forgotten. It is 
this forgotten conclusion that will be 
rediscovered as the St Petersburg game is 
increasingly simulated. These simulations, 
together with the correct derivation of the 
expected value, spell the end of the myth of the 
paradox. 
 

 
Endnotes 

1 Risk is used in the sense Frank Knight used it; those situations where the outcomes and their associated probabilities are 
known. 

2 Historically property-casualty insurance products were not priced using probability theory. They were priced using the loss 
ratio. A relationship between the loss ratio and probability theory can be demonstrated. 

3 A word of caution is in order. This method is applicable for games subject to the Central Limit Theorem and Law of Large 
Numbers. As the St Petersburg game demonstrates, not all games of chance are subject to the Central Limit Theorem and 
the Law of Large Numbers. The standard method should not be blindly mechanically applied. 

4 Samuelson (1977:37) correctly points out that in giving them this credit; they are credited with too much. 
5 This history has often been told and increasing detailed histories are appearing. To mention a few; Todhunter (1865), 

Maistrov (1974); Samuelson (1977), Stearns (2000), Neugebauer (2010), Peters (2011). The paper by Neugebauer in 
particular is very comprehensive and worth consulting. The famous letters between Pascal to De Fermat were exchanged 
in1654. A detailed commentary on this correspondence was recently published by Devlin (2008). 

6 What happens when M increases, is explained by Vivian (2003a). The distribution for the flipping of a coin is the binomial 
distribution which is a discrete not continuous distribution, which can approximate the normal distribution. Figure 1 indicates 
the shape of the distribution as M increases. 

7 Nicolas can be spelt in number of ways. The spelling used in this article is taken from the English translation of Daniel 
Bernoulli’s 1738 article. 

8 The correspondence is conveniently collected and published by Richard J Pulskamp (1999) at 
http://www.cs.xu.edu/math/sources/monmort/stpetersburg.pdf. 

9 This was described to be the paradox by Todhunter, 1865. It is important to make clear what constitutes the paradox since 
in more recent articles, authors have claimed to discover further paradoxes but do not indicate, clearly, what they consider 
to be the paradox; examples of this are the so-called Pasadena and harmonic sequence paradoxes. For a discussion on 
these recent attempts to create St Petersburg type of paradoxes see Vivian (2006) and Vivian (2009). 

10 Todhunter (1865:220), Stigler (1950:374). 
11 Bernoulli did not offer any empirical evidence of decisions actually made. In fact empirical evidence had to wait several 

centuries. Bernoulli (1738:§17) simply concluded, ‘… our propositions harmonise perfectly with experience...’ 
12 The history of utility theory was set-out by Stigler (1950) 
13 Even before the Theory of Games was available its importance was recognized by leading academics as in the case of 

Friedman and Savage (1948). 
14 In the early 20th century the theory of indifference curves was developed by Edgeworth and others. From this a type of 

cardinal utility analysis developed. However unlike the von Neumann-Morgenstern ‘certainty-equivalent’ techniques, that 
type of cardinal utility (despite the identical terminology) could not provide measurable interpersonal comparisons of utility.  

15 The exception may be Feller (1945;1968: 246) discussed below. 
16 Daniel Bernoulli (1738/1954 footnote 10). 
17 Karl Menger was the son of the Carl Menger mentioned earlier. The original text used N not M. It is changed to M for 

purposes of the article for the sake of consistency within this article. 
18 Vivian (2003) and the simulation verification Vivian (2004). 
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19 For a recent discussion see Higgs’ (2011) discussion of Samuelson’s (1952) support of the inductive method and 
unwarranted disparaging of the deductive method.  

20 Bacon’s work initiated considerable debate about how knowledge is acquired. See for example Whewell (1837), Whewell 
(1840), Mill (1843/1872), De Morgan (1847), Jevons (1897). This article does not require any discussion of this debate 
since the issue of the St Petersburg game is resolved simply by observation. The observation of outcomes of the natural 
phenomenon which appears when St Petersburg games are simulated are at variance with the predicted traditional 
theoretical outcome of the St Petersburg game. 

21 Galileo in his defence before the Roman Inquisition was able to refer to a surprisingly long list of eminent scientists who 
held the heliocentric view.  

22 Psalm 93:01, Psalm 96:10, Ecclesiastes 1:5 and 1 Chronicles 16:30. 
23 Clerke (1911.) 
24 Copernicus did not live to see the impact of his work. He was seized with apoplexy and paralysis towards the close of 1542 

and died on the 24th May 1543. He also did not live to note the Preface sneaked in by Andreas Osiander insisting that the 
views in the work were purely of a hypothetical character and not factual. 

25 The simulation program was written by Richard J Vivian using Microsoft Excel 2010. It is known that the random Excel 
generator can be improved (Knüsel 1998, McCullough et al., 2003 and 2008). Knüsel (2010) more recently has opined that 
the deficiencies identified in earlier versions of Excel are rectified in Excel 2010. Since the purpose of the simulations in this 
paper are merely to validate the theory, which the simulations achieve, any remaining limitations which may exist in the 
Excel 2010 random generator are not regarded to be critical. 

26 If the Wikipedia entry of the St Petersburg game is examined, a link will be found to an online simulation of the St 
Petersburg lottery. 

27 As pointed out above, theoretically, if the St Petersburg game is played 2k times it produces a series which is expected to 
be k+1 in length. Moritz’s table on page 60 produces a series k in length which Moritz sums to indicate a total of 2k games 
but if the total is checked it will be noted that one game is missing. He probably could not work out how to account for the 
missing game, λ in the above theory, and thus simply ignored it.  
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