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Counterparty valuation adjustment (CVA) risk accounts for losses due to the deterioration in credit quality of 
derivative counterparties with large credit spreads. Of the losses attributed to counterparty credit risk 
incurred during the financial crisis of 2008-9 were due to CVA risk; the remaining third were due to actual 
defaults. Regulatory authorities have acknowledged and included this risk in the new Basel III rules. The 
capital implications of CVA risk in the South African milieu are explored, as well as the sensitivity of CVA risk 
components to market variables. Proposed methodologies for calculating changes in CVA are found to be 
unstable and unreliable at high average spread levels. 
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1 

Introduction 
The 2008-2009 financial crisis originated when 
asset price bubbles inflated, interacting with 
new kinds of financial innovations that masked 
risk (Baily, Litan & Johnson, 2008). In December 
2010, the Basel Committee on banking super-
vision (BCBS) updated Basel II with a set of 
rules known as Basel III (BCBS, 2011) 
designed to augment and repair the Basel II 
rules which did not function effectively in the 
financial crisis. Amongst these are new 
regulations for CVA and CVA risk. 

The traditional approach to control counter-
party credit risk was to establish limits against 
future exposures and verify potential trades 
against these limits – these are commonly 
referred to as potential future exposures (PFEs) 
(Algorithmics, 2012). The severe volatility 
experienced during the financial crisis, however, 
led to a comprehensive review of accounting 
for counterparty credit risk (CCR). As a result, 
the value of derivatives transactions with 
counterparties is now adjusted by dealers to 
reflect the possibility of loss incurred because 
of counterparty default (Hull & White, 2012). 
This adjustment is known as the credit value 
adjustment (CVA). CVA eliminates the need 

for controlling CCR through limits by intro-
ducing dynamic CCR pricing directly into new 
trades. Many banks already take CVA into 
account in their accounting statements, but the 
financial crisis has led innovative banks to 
more accurately assess CVA, and integrate CVA 
into pre-deal pricing and structuring. Calculating 
CVAs is, however, computationally intensive 
(Pykhtin & Zhu, 2007: Gregory, 2009a).  

In addition to the measurement of CVA, 
CVA risk arises from changes in (a) counter-
party credit spreads and (b) market variables 
that affect the no-default value of derivative 
transactions (Hull & White, 2012). CVA risk, 
therefore, may only be accurately assessed after 
the effect of changes in both components have 
been identified and measured. While Basel III 
requires an assessment of CVA risk arising 
from changes in counterparty credit spreads to 
be included in the market risk capital calcu-
lation, CVA risk – arising from changes in 
underlying market variables – is not required 
under Basel III.1 This article explores the 
impact of CVA risk on regulatory capital 
requirements for banks and examines the 
influence of high spread levels on the accurate 
assessment of CVA risk. 

This paper proceeds as follows: Section 2 
provides a broad literature review explaining 
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the concept of CCR, its importance in modern 
finance, why CVA is necessary and problems 
with the concept of CVA and its practical 
implementation. Section 3 covers the various 
methodologies proposed by several authors to 
measure CVA and provides a synthesis of 
these methodologies into a coherent approach 
for the South African market. In addition, this 
section details the data requirements and 
establishes the requisite mathematics for 
measuring CVA. Due to the calculation 
complexity involved in determining portfolio 
CVA, a single, simple interest rate derivative 
was used as the underlying derivative 
transaction to explain the processes involved. 
The results obtained from models proposed in 
Section 3 are provided in Section 4, along with 
a discussion of these results and an inter-
pretation of model strengths and weaknesses. 
The influence of changes in average spread 
levels on CVA is explored and found to be 
counterintuitive and potentially inaccurate if 
applied indiscriminately. The effect of changing 
underlying market factors on risk capital is 
also investigated, despite the omission of this 
effect from Basel III rules. Using South 
African data, specific attention is paid to the 
South African market. Section 5 proposes 
future research and concludes. 

2 
Literature review  

It became apparent in the 1990s that over the 
counter (OTC) derivatives trading gave rise to 
significant credit risk exposure (Canabarro & 
Duffie, 2003). Banks implemented two 
principal measures to deal with this risk: risk 
reduction via enforced close-out netting 
agreements with (or collateral posting from) 
the relevant counterparty and risk pricing by 
charging counterparties a spread, dependent on 
the riskiness (for example, credit rating, 
maturity) of the transaction. This charge – the 
CVA – is minimal for a transaction in which 
the collateral is exchanged daily, in cash, on 
the full mark-to-market of the derivative 
portfolio, but it can be substantial if the 
counterparty is not obliged to post collateral, 
and particularly if the credit quality of the 
counterparty is poor (for example, rated sub-
investment grade or worse than BB-). 

Currently (2014), the majority of a typical 
bank's CVA comprises two classes of counter-
party namely sovereigns (which traditionally 
do not post collateral despite their substantial 
derivatives trades) and corporates (which unlike 
most banks, are often not in a position to move 
collateral every day). These corporates may be 
willing to post collateral less frequently, but 
resent such restrictions on cash flows and often 
demand that banks only request collateral 
when requirements exceed a certain threshold 
(Hull & White, 2012). Individual CVAs may 
be insubstantial, but the total CVA for banks' 
corporate derivatives books can be extensive. 

Canabarro & Duffie (2003) introduced 
methodologies to measure, mitigate and price 
CCR. Monte Carlo simulation techniques were 
proposed as a pricing mechanism for CCR and 
a practical estimation of CVA using currency 
and interest rate swap trades between two 
defaultable counterparties was presented. 

Portfolio level counterparty risk and credit 
mitigation techniques were discussed by De 
Prisco & Rosen (2005) who also employed 
Monte Carlo simulation to calculate statistics 
relevant to CCR measurement. A practical 
implementation of collateral modelling was 
proposed. The measurement of the expected 
exposure in credit derivative portfolios was 
also affected by wrong way risk. (Wrong way 
risk arises when the exposure to a counterparty 
is positively correlated with the credit quality 
of that counterparty, so default risk and credit 
exposure increase together). 

Gibson (2005) discussed both an analytical 
and a Monte Carlo simulation method to 
measure expected exposure and expected 
positive exposure for margined and collate-
ralised counterparties. The former method uses 
a Gaussian model to determine the mark-to-
market value of a portfolio exposed to 
counterparty risk. The latter simulation method 
however uses a Gaussian random walk to 
explore the relationship between collateralised 
exposures and other variables, such as the 
initial mark-to-market, the threshold, and the 
re-margining period. 

Redon (2006) presented two analytical 
methods to measure expected exposure subject 
to wrong way risk. The first calculates expected 
exposure as a weighted average of expected 
exposure in the presence and absence of 
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country crises, while the second – based on a 
Merton model2 of default risk – estimates 
expected exposure by assuming Brownian motion 
to model the mark-to-market value of the 
portfolio subject to counterparty risk. Correlating 
the Brownian motions used to model both 
default and mark-to-market allow the deter-
mination of wrong way risk and the derivation 
of analytical expressions for expected exposure.  

Pykhtin & Zhu (2007) demonstrated how 
margin agreements may be employed to reduce 
CCR and, through the exploration of differences 
between counterparty and contract-level expo-
sures, presented a methodology for calculating 
expected exposure and CVA assuming wrong 
way risk. 

Bilateral counterparty risk was discussed in 
detail by Brigo & Capponi (2008) who demon-
strated that in the absence of spread volatility, 
CVA decreases as the correlation between 
investor and counterparty tends to 1. Modelling 
the joint default of the investor, counterparty 
and underlying credit default swap (CDS) led 
to the conclusion that pure contagion models 
may not be appropriate for modelling CVA risk 
in high correlation environments. The authors also 
concluded that simple add-on approaches to 
capture CVA behaviour (such as those described 
by the BCBS, 2006) were ineffectual. 

Gregory (2009b) calculated bilateral CVA 
for a portfolio comprising OTC derivatives.  
A Gaussian copula model which permitted 
simultaneous defaults was used and the effect 
of these defaults (which effectively represent 
systematic risk) on the measured CVA, was 
shown to be insignificant.  

Using a structural model subject to jump 
diffusion, Lipton & Sepp (2009) explored CCR 
in CDS contracts. From their results, novel 
techniques were developed for measuring CVA. 

A Markov portfolio credit risk model which 
accounts for default and wrong way risk 
dependence by allowing simultaneous defaults 
among underlying credit names, was proposed 
by Assefa, Bielecki, Crépey & Jeanblanc (2009). 
Employing the standard assumption of no 
dependence between exposure and probability 
of default, a relationship between the counter-
party's hazard rate and the value of variables 
was specified, whose values can be generated 
by Monte Carlo simulation (and used to calculate 
CVA). The results obtained show good agree-

ment between the behaviour of expected positive 
exposure and CVA (Assefa et al., 2009). 

Other authors who tackled the wrong-way 
risk problem include Cespedes, De Juan 
Herrero, Rosen & Saunders (2010) and Sokol 
(2010) who both approached the problem by 
assuming the exposure follows a one-factor 
Markov process and a copula (Gaussian or 
otherwise) determines the dependence between 
this process and the time to default. 

CVA losses were considerable for some 
banks during the credit crisis. Under Basel II, 
the risk of counterparty default and credit 
migration risk were addressed, but mark-to-
market losses due to CVA were not (i.e. CVA 
risk had no capital assigned to it). Roughly 
two-thirds of losses attributed to CCR during 
the financial crisis, however, were due to CVA 
losses. Only about one third were due to actual 
defaults (BCBS, 2011). Basel III now includes 
charges for CVA risk designed to ensure that 
banks carry substantial amounts of capital 
against CVA risk – particularly for over-the-
counter derivatives trading with counterparties 
who do not post daily cash collateral. It is 
important to note that the new capital does not 
provide for the risk of loss due to counterparty 
default, but rather the risk that the CVA might 
increase (Hull & Wihte, 2012). 

A separate but related problem involves 
central counterparties (CCPs). In 2009, the Group 
of 20 mandated local regulators to route a 
portion of derivative trades through domestic 
central counterparties (CCPs) (Group of 20, 
2009). In part because this exercise involves 
co-operative cross-border regulatory schemes, 
most large international markets (including the 
Eurozone, Australia, Hong Kong and Canada) 
have retreated from the directives, stating 
“concerns of domestic supervisors” (Wood, 2013). 

South African derivative dealers are active 
and enthusiastic participants of international 
markets and must, therefore, address clearing 
mandates of international dealers despite the 
absence of a domestic CCP (February 2014).3 
South Africa is also committed to the 
successful implementation of Basel III which 
includes CVA capital charges (and thus 
clearing incentives for derivative counterparty 
risk). Understanding the vagaries of CVA is 
thus of critical importance to the South African 
derivatives market (Wood, 2013). 
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3 
Methodology and data 

Since all derivatives involve counterparties, 
valuation of derivative transactions must take 

into account the possibility of loss incurred 
because of counterparty default (Hull & White, 
2012).  

 

Derivative valueadjusted = Derivative valueno default − !"#. 
 

CVA is thus a cost. To measure CVA and 
ultimately the CVA risk associated with 
derivative transactions, the underlying deriva-
tive(s) must first be valued. In practice, banks 
will more likely trade portfolios comprising 
several derivatives, but for this article, a single, 
simple interest rate swap was used. This serves 
the triple purpose of (a) providing a basis for 
the complete CVA calculation without the 
introduction of unnecessary complexity, (b) 
calibrating the South African yield curve using 
the Vasicek mean reverting interest-rate model 
and (c) elucidating the effects of elevated 
credit spread levels on CVA.  

3.1 Construction and calibration of the 
South African yield curve 

Yield curve models are divided into two 
principal types: equilibrium approaches and 
no-arbitrage models. The former focus on 
modelling the dynamics of the instantaneous 
rate. Yields at longer maturities are then 
derived using assumptions about the risk 
premium. Equilibrium models focus primarily 
on time-series dynamics at the expense of 
inaccurate fitting of the complete cross-section 
of the yield curve. The latter models emphasise 
perfect fitting of the term structure at points in 
time so as to guarantee that no arbitrage 
possibilities exist. Although these models  
are of particular importance for pricing 
derivatives, they ignore time series dynamics 
of the yield curve which can be important for 
bond pricing and other fixed-income securities 
(Diebold & Li, 2006). 

The Vasicek model – which follows the 
equilibrium tradition and an early proponent of 
term structure models – appeared in 1977. 
Subsequently, it has survived and inspired 

several other models and it remains of 
considerable importance in valuing securities 
that require accurate time-series dynamics, 
including bond options, futures and other 
interest rate derivatives (Vasicek, 1977; Mamon, 
2004). A key innovation of the Vasicek model, 
supported and justified through economic 
arguments, was the introduction of a mean-
reverting stochastic process to model the 
evolution in time of the short rate. The model 
assumes that the current short rate is known 
with certainty and its subsequent evolution is 
governed by (Vasicek, 1977): 

 

!!! = ! ! − !! !" + !"!! (1) 

where the current short rate, rt is a continuous 
(no jumps) function of time and follows a 
Markovian diffusion process, γ! is the long run 
mean of the short rate, ! is a measure of the 
speed of the return of the short rate to the long 
run mean (the mean reversion coefficient), σ is 
the short rate volatility and zt is a standard 
Wiener process. Research has relaxed the 
condition of constant volatility (Brenner, Harjes 
& Knoner, 1996; Hong, Li & Zhao, 2004) and 
Shimizu and Yoshida (2006) have adapted 
Equation 1 to include diffusion processes with 
jumps. 

The parameters of Equation (1) (α,γ and σ) 
were estimated using maximum likelihood 
methods (James & Webber, 2004) and historical 
South African data spanning 2001 – 2013 
procured from South African banks. Discount 
factors (used to price the interest rate swap – 
see Section 3.2) were calculated from (Hull & 
White, 1990, 1995): 

!!! = !! exp(−!!!!) (2) 

where 
 

!! = exp
!! − ! ⋅ !!! − !!

2
!! !− !!!!!

4! !and!!! =
1 − exp −!"

! .  
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Figure 1 shows the term structure (up to 10 
years) of one possible yield curve constructed 
using the Vasicek model. Relevant parameters 

were derived directly from the South African 
market. 

 
Figure 1 

One simulation of the South African yield curve using the Vasicek model.  
For this research, 10,000 such interest rate scenarios were generated 

 
 
3.2 Pricing a simple interest rate swap 
A simple floating rate note (FRN) was used to 
price the interest rate swap. The FRN pays a 
floating rate coupon ƒ at the end of each 
coupon period h and the accrual period is the 
same for all coupons. The floating rate is fixed 
at the prevailing market rate, for the ith coupon 
period, at the beginning of each coupon period 
ti. The floating rate thus corresponds to the 
forward rate between ti and ti%+!h measured at 

time ti. The present value of the FRN today is 
the expected value of the future floating cash-
flows plus the principal at maturity. Future 
forward rates, ƒ"(ti,%ti,%ti%+ h), are unknown, but 
these may be set equal to today’s expected 
forward rates ƒ"(0,%ti,%ti%+ h) using the principal 
of no arbitrage.4 The FRN value is the present 
value of the sum of ! expected floating rate 
coupons, ƒih, plus principal: 

 

!!!"# 0,! = !!ℎ ⋅ !" 0, !! + ℎ + !" 0,!
!

!!!
 (3) 

with the ith forward rate given by ƒi%=!ƒ"(0,%ti,%ti%+ 
h) and DF the relevant discount factors 
(Vasicek, 1977). 

The value of this FRN (assumed to have no 

credit risk exposure) can be shown to equal par 
(i.e. 100 per cent) by substituting the definition 
of the forward rate (Equation 4, below) into 
Equation 3: 

 

! !,!,! + ℎ = 1
ℎ

!" !,!
!" !,! + ℎ − 1 . (4) 

Simple fixed/floating interest rate swaps may 
be represented by a series of fixed (or floating 
rate) payments, exchanged with a counterparty 
into a series of floating (or fixed) rate cash 
flows. Such a swap – paying a fixed rate ! plus 
principal and receiving a floating rate plus 
principal – is used as the underlying derivative 

in this paper (Vasicek, 1977).  
Assume j% =% 1,% …,% N floating coupons with 

accrual periods hj and i = 1, …, M fixed rate 
coupons with coupon period li. The principal 
amounts are the same on both sides of the 
swap, so they cancel and:  
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!swap 0,! = !!floating leg − !!fixed leg%

= !! ⋅ ℎ! ⋅ !" 0, !! + ℎ! −!
!

!!!
! ⋅ !! ⋅ !" 0, !! !

!

!!!
. (5) 

Market rate swaps are constructed such that the 
initial mark-to-market value is zero, thus the 
fair market coupon (annualised swap rate 
R(0,T) for maturity T) may be derived by 
rearranging Equation (6) to solve for the swap 
rate R(0,T) =!C:  

! 0,! = 100% − !" 0,!
!! ⋅ !" 0, !! !!!

!!!
. 

 

The market swap rate, R(0,T), is the swap level 
conventionally quoted in the market (Vasicek,  

1977). This rate is the annualised fixed rate 
paid or received on a market swap with a given 
maturity T. Note that the discount factors, DF, 
are calculated using Equation 2.  

Figure 2 shows the net exposure (to one 
counterparty) of a 10-year interest rate swap as 
a percentage of notional associated with the 
simulated yield curve in Figure 1. For this 
research, 10,000 such exposure profiles were 
generated corresponding to the 10,000 interest 
rate scenarios. 

 
Figure 2 

One simulation of net exposure (to one counterparty) of a 10-year interest rate swap  

 
 
3.3 CVA calculation 
CVA is the market value of counterparty credit 
risk: the difference between the risk-free 
portfolio value and the true portfolio value that 
takes into account the counterparty’s default. 
When there are netting and collateral agree-
ments, CVA must be calculated at the 
counterparty level and not separately for each 
individual trade (Hull & White, 2012). 

In addition to modelling limitations, calcu-
lating CVA is computationally intensive. It is 
now standard for banks to employ Monte Carlo 
simulations to compute counterparty exposures. 
This is the most expensive step: A single 
simulation of a portfolio of 50,000 positions, 
over 2,000 scenarios and 100 time steps, 
requires 10 billion valuations. A compre-
hensive risk analysis requires a large number 

of CVA calculations for sensitivities, CVA 
VaR and marginal CVA of new trades (Rosen 
& Saunders, 2012). 

CVA can be defined either on a unilateral or 
a bilateral basis. Unilateral CVA assumes that 
the institution which does the CVA analysis 
(the bank) is default-free. It gives the market 
value of future losses caused by the counter-
party’s potential default. Bilateral CVA takes 
into account the possibility of both the 
counterparty and the bank defaulting. This is 
required for an objective fair value calculation 
since both bank and counterparty require a 
premium for the credit risk they bear, other-
wise, they would not agree on the fair value of 
the trades. Unilateral CVA is now part of Basel 
III, (BCBS, 2009) while bilateral CVA is more 
in line with the market practice at top financial 
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institutions for pricing and hedging, as well as 
accounting rules (FASB, 2006).  

Assuming no wrong way risk (equivalent to 

assuming that the default probability, exposure 
and recovery values are independent), CVA is 
given by: 

 

!"# !,! ≈ 1 − ! ⋅ ! !! ⋅ !! !! ⋅ ! !!!!, !!
!

!!!
 (6) 

where ! is the recovery rate, ((1!–!R) is the loss 
given default), B(tj) is the risk-free discount 
factor at time tj, EE(tj) is the expected 
exposure at time tj, q(tj)1, tj) is the marginal 
default probability in the interval [tj)1, tj] and 
where m is the maturity (Gregory, 2009b). 
Note that default is present in Equation 6 only 
via default probabilities, thus when employing 
a simulation framework to estimate CVA, only 
exposures need to be simulated, not default 
events (which are rare) (Gregory, 2009b). 

3.4 Estimating the components of the 
CVA calculation 

Expected exposures are the probability-
weighted positive exposures: calculating these 
is a non-trivial exercise. Consider the positive 
exposure profile for a 10 year interest rate 
swap in Figure 3 below. The effective 
exposure (EE) is the positive mark-to-market 
value (since it is only these exposures – the 

positive mark to market (MtM) values – which 
are of concern to the institution since losses 
will only occur for these exposures) of an 
institution's exposure to a counterparty. The 
expected positive exposure (EPE) is the 
average EE through time while the effective 
EE is the non-decreasing EE: the value ratchets 
up, never down, over the derivative’s lifetime. 
The effective EPE is the average of the 
effective EE. Note that future exposures are 
simulated, thus the potential future exposure 
(PFE, not shown in Figure 3) is the exposure 
exceeded with a given probability (usually 95 
per cent or 99 per cent). If 1,000 simulations of 
possible future exposure profiles are generated, 
the PFE is the 50th largest exposure at a 95 per 
cent confidence level. In principle, this is 
similar to the well-known and widely used 
historical value at risk methodology in market 
risk. 

 
Figure 3 

Various relevant exposure measures based on a single simulation of possible  
future exposures of a 10 year interest rate swap 

 
 

The EE represents the expected (probability-
weighted) exposure value conditional to being 

in the shaded area (i.e. exposure > 0) in Figure 
4 below. 
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Figure 4 
Exposure metrics EE and PFE. Positive exposures (of concern to the institution)  

are represented by the shaded region 

 
 
To estimate the value of EE analytically, 
consider a normal distribution with mean µ and 
standard deviation σ where the former 
represents the expected mark-to-market value 
of the derivative value (or the portfolio of 
derivatives) and the latter represents the 
standard deviation of these mark-to-market 
values. The mark-to-market value, V, of this 
transaction at any time t is given by V!=!µ!+!σZ 
where Z is a standard normal variable. It 
follows that the (positive) exposure, E, may be 
written as E!–!max!(V,0) =!max (µ%+!σZ,%0). The 
expected exposure in this case is: 

!! = (! + !") ⋅ ! ! !"
!

!!!

, (7) 

and  where the  lower  integration  limit is from%
µ%+!σZ, hence ! = − !

!.  
Integrating Equation 7 gives: 

!! = ! ⋅ ! ! + !" ⋅ ! ! !"
!

!!!

%

= ! ! ! !" + ! ! ⋅ ! ! !"
!

!!!

!

!!!

%

= !Φ ! ∞
− !!

+ !" ! ∞
− !!

%

= ! Φ ∞ −Φ − !! + ! ! ∞ − ! − !! %

= ! 1 −Φ − !! + ! 0 − ! − !!  

Hence 
!! = !Φ !

! + !" !
! ,%

 

where φ(…)!is the normal distribution function, 
φ(…) is the cumulative normal distribution 
function  and  use  has  been made  of  the fact 
 that ∫ ! ⋅ exp !!

! = exp !!
!  and ! ! =

!
! !! exp − !

!
!!!
!

!
.   To   generate  the results 

required, 10,000 interest rate scenarios (and 
associated exposure profiles for each scenario) 
were generated using Monte Carlo simulation.  

Recovery rates are assumed to be constant. 
Although this condition may be relaxed, 
recovery rates are notoriously difficult to 
estimate practically, so this assumption is not 
unusual (e.g. Gregory, 2009b, Hull & White, 
2012).  

Risk neutral discount factors are deter-
mined using Equation 2, which are – in turn – 
based on an interest rate model (in this case, a 
mean-reverting, Vasicek interest rate model).  

Marginal probabilities of default may be 
calculated from credit spreads. If the complete 
term structure of credit spreads for the relevant 
counterparty cannot be observed in the market 
this may be estimated using credit spread data 
for similar companies (in the same sector, for 
example, and preferably operating in the same 
geography). A reasonable estimate of the risk 
neutral   marginal  probability,  q(0,j), !between 
times! 0 and tj is given by !!,! = exp − !!!!

!!!  
where sj is the credit spread for a maturity of tj. 
It  follows  that  the  marginal  risk   neutral 

Expected(MTM
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probability of default – defined by qj  – may be 
given by: 

!! = exp − !!!!!!!!1 − ! − exp − !!!!
1 − ! . (8) 

Swap values were obtained from one of the 
‘Big 4’ South African retail and commercial 
banks. 

With the components of Equation 6 
established, these are combined and the results  
obtained presented in the following section. 

4 
Results 

Of the 10,000 possible exposure profiles 
generated from the 10,000 interest rate 
scenarios, (for clarity) only 50 are shown in 
Figure 5(a) below. Figure 5(b) illustrates the 
expected exposure, the potential future 
exposure and the expected (average) values of 
each of these swap MtM metrics. 

 
Figure 5 

(a) 50 possible swap MtM exposures corresponding to 50 interest rate simulations and  
(b) relevant metrics for positive MtM exposures 

 
 
4.1 Effect of credit spread changes on 

CVA 
Credit spreads for maturities up to 10 years for 
South African issuers of differing credit 
quality are shown in Table 1, spanning from 
the onset of the crisis in 2008 until December 

2012. Credit spreads were at their highest 
levels, during the European sovereign crisis in 
2010, but have since recovered. These data 
provide an indication of levels to which credit 
spreads may rise. It is likely that worse credit 
quality issuers suffered even higher spreads.  

 
Table 1 

South African credit spreads for different credit quality issuers. 

   
Maturity in years 

   
1 2 3 4 5 6 7 8 9 10 

Spreads (in 
bps) 

2008 
A- 250 197 180 165 141 125 111 99 85 75 

B 488 408 367 345 273 232 198 168 127 115 

2010 
A- 279 214 191 188 183 170 130 130 115 98 

B 568 525 452 378 322 268 232 228 208 125 

2012 
A- 199 176 174 148 128 123 115 110 98 89 

B 344 293 267 252 206 180 158 138 112 105 
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The spreads for these different quality issuers – 
spanning 5 (2008-2012) turbulent years – are 

shown in Figure 6 below. 

 
Figure 6 

Spreads for (a) ‘good’ (A-) and (b) ‘poor’ (B) quality South African credit issuers  
recorded over the period 2008 – 2012 

 
 
Using Equations 6 and 8, the CVA for a 10-
year, OTC interest rate swap with payments 
netted off and settled on a quarterly basis, was 
calculated using South African spreads derived 
from the recent market (December 2012) and 
as shown in Table 1 (in basis points (bps)). 

The results obtained compare favourably with 
those estimated from other studies conducted 
in similar markets (see, for example, Carlson 
& Silén, 2012). CVA for low spreads (2012) 
high spreads (2008-10) is shown in Figure 7. 

 
Figure 7 

CVA for a 10-year interest rate swap evaluated in a ‘low’ spread regime (e.g. 2012) and  
a ‘high’ spread regime (e.g. 2008-10) over all recovery rates 

 
 
The CVA for different credit spreads, seen in 
Figure 7, was measured over all recovery rates 
(i.e. 0%!<!RR%<!100%).  Using a recovery rate 

of 55 per cent,5 the CVA is roughly three times 
higher when spreads are wide than when 
spreads are tight. At low recovery rates, the 
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effect is more dramatic (up to six times 
greater). Figure 8 shows the full relationship of 

CVA to recovery rates and the absolute spread 
level. 

 
Figure 8 

CVA for a 10-year interest rate swap evaluated over a 1,000 bps absolute change  
in credit spreads and all recovery rates 

 
 
4.2 CVA risk: changes in spreads 
CVA is affected by two types of exposures: 
one from movements in counterparty credit 
spreads and the other from movements in 
underlying market variables. Considering the 
former, the impact on the CVA of a small 

change in spreads (Δs) over all si (i.e. a  
small parallel  shift) may  be estimated  using a 
delta/gamma approximation, i.e. Δ! ! = ! ⋅
Δ! + !

! Γ ⋅ Δ!
! where δ%= df% /% dχ and Γ! = d2f% /%

dχ2 (Hull & White, 2012). Using Equation 6, 
the change in CVA is: 

 

ΔCVA= !! exp − !!!!!!!!1 − ! − !!!! exp − !!!!
1 − ! ⋅ !!Δ!

!

!

!!!

%

+ 1
2 1 − !

!!!!! exp − !!!!!!!!1 − ! − !!! exp − !!!!
1 − ! ⋅ !! Δ! !

!

!

!!!

 

(9) 

Note that Equation 9, the ΔCVA, is affected by 
changes in spreads (Δs) and the absolute 
spread level. The influence of both the change 
in spread and the absolute spread level is 
shown in Figure 9. To remain consistent with 
BCBS senior debt LGD values (BCBS, 2009), 
a fixed recovery rate of 55 per cent was chosen 
for this analysis. 

The results of Figure 9 pose some 
interesting questions. For low average spreads 
(such as those enjoyed by good quality credits 
during benign economic periods), as expected, 
CVA increases with increasing !. However, for 

high levels of average spreads (i.e. poor quality 
credits in volatile market conditions), an 
increase in spreads results in a decrease in 
CVA. It is difficult to believe these results 
were a deliberate attempt by this approach's 
proponents to restrict potentially punitive 
regulatory capital charges when markets are 
volatile and spreads are high.  

Capital equations governing the Basel II 
Internal Ratings Based (IRB) approach for 
credit risk reduce the amount of regulatory 
capital required for unexpected credit losses at 
high probabilities of default (i.e. for PDs > 40 
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per cent, see Laurent, 2004) which seems 
counterintuitive at first glance. The resolution 
of the paradox, however, is fairly simple. At a 
given confidence interval6 total credit losses 
are the sum of expected and unexpected losses: 
the former are covered by bank pricing and 
provisioning and these increase with PD at a 
rate faster than regulatory capital (which 
covers unexpected losses) increase. As PDs 
increase, therefore, regulatory capital, covering 
unexpected losses, decrease since expected 
losses become more ‘expected’ and bank 

impairments increase faster. This logic cannot 
be applied to the shape of the ΔCVA versus Δs 
curves (higher spreads should result in higher 
CVA regardless of average spread). Ignorance 
of this could be detrimental to banks reserving 
capital for potential CVA losses, especially in 
highly volatile market conditions. Using this 
model (albeit when applied to the problem of 
wrong way risk), Hull & White (2012) found 
similar issues and argued that the sign of the 
calculated effects were counterintuitive. 

 
 

Figure 9 
ΔCVA in bps as a function of spread and change in spreads 

 
 

Figure 10 
Effect on ΔCVA of Δs for various average spreads. For a recovery rate of 55 per cent  

at average spreads of ≈ 400bps, ΔCVA/Δs%≈%0     
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The slope of ΔCVA versus Δs changes sign 
(for a recovery rate of 55 per cent) when the 
underlying credit has an average spread of ≈ 
400bps. As shown in Figure 10, at this average 
spread, the change in CVA for changes in 
spreads is negligible. These average spread 
levels are not rare (see Figure 6 and Table 1): 
they are commonplace for low maturity, poor 
quality credits or during stressed market 
conditions. That the proposed methodology 
suggests no increase in CVA for any changes 
in spread at these average spread levels, 
requires further investigation. The results at 
higher average spreads (namely that CVA 
decreases for increasing changes in spreads) is 
patently incorrect and potentially highly 
damaging. 

4.3 CVA risk: changes in underlying 
market variables 

Establishing the influence of small parallel 
variations in counterparty credit spreads on 
CVA and risk capital is a simple exercise using 
Equation 9. To accomplish the same for 
changes in underlying market variables is more 
complex since they evolve in time via 
geometric Brownian motion paths or mean 
reversion processes. The simulation dynamics 
for each is quite different.  

Using Equation 6 and rewriting B(tj) . EE(tj) 
as vj, consider a market variable u with an 
initial value of u0. Assume vj changes to !!! and 
!!! when  u0  changes  by  a  small amount, ∈  to 
u0! +! ∈  or u0! –! ∈ respectively. The associated 
partial derivatives of Equation 6 are: 

!CVA
!" = 1 − !

2! ⋅ !! !!! − !!!
!

!!!
%

!!CVA
!!! = 1 − !

2!! ⋅ !! !!! + !!! − 2!!
!

!!!
 

Hull & White (2012) provide a discussion on 
the challenges posed by these complexities and 
offer an alternative way of measuring wrong 
way risk. Wrong way risk may be modelled by 
changing the way the vjs are calculated, but the  
calculation of the q(t)s (Equation 8) may be 
altered to incorporate the way variables used in 
the Monte Carlo simulation – discussed in 
Section 3 and used to determine CVA – 
evolve. To accomplish this, Hull & White 

(2012) introduce hazard rates: direct measures 
of the probability of default and although 
hazard rates are not observable in the market, 
they are related to credit spreads which are 
observable. A commonly-used approximation 
for the average, risk-neutral hazard rate 
between time 0 and ! is: 

ℎ ≈ ! !
1 − ! (10) 

Where S(t) is the credit spread for maturity t.  
Hull & White (2012) asserted that a 

counterparty’s hazard rate may be modelled 
using a deterministic or stochastic variable that 
(a) affects the exposure to the counterparty and 
(b) can be calculated in the Monte Carlo 
simulation (Section 3). Potential candidate 
variables include credit spreads, share prices, 
relevant commodity prices (e.g. the oil price 
for an oil producer, the gold price for a gold 
producer, etc.). A robust relationship which 
satisfied the constraints outlined above was 
found to be: 

ℎ ! = exp![! ! + !" ! + !"] (11) 

Where a(t) is a function of time, the constant 
parameter b is a measure of the right-way 
(defined as the situation in which exposure to a 
counterparty is negatively correlated with the 
credit quality of that counterparty. So default 
risk and credit exposure move oppositely). A 
wrong way risk in the model is where w(t) is 
the value of the portfolio with the relevant 
counterparty, the constant σ measures the noise 
implicit in the model and ∈ is a normally 
distributed such that ∈%~% N(0,1).%Hull & White 
(2012) found that unless σ%>> w(t), the noise 
term σ∈% is negligible and may be ignored. 
Equation 11 becomes: 

ℎ ! = exp![! ! + !" ! ] (12) 

and for small percentage changes in ℎ: 
Δℎ
ℎ = !Δ! (13) 

Two approaches to estimating ! were proposed 
(Hull & White, 2012): 
1) assemble historical data on the counter-

party’s credit spreads and associated ws. 
These credit spreads may be converted 
into hazard rates using Equation 10 and b 
may be estimated using simple linear 
regression techniques on Equation 13; or 
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2) employ subjective judgement about the 
amount of counterparty right/wrong-way 
risk. 

Although Hull & White (2012) adopt the latter 
approach, arguing that the former approach 
assumes the influence of the market factors on 
counterparty credit spreads is repeatable and 
thus unrealistic. Subjective judgements are not 
without their biases, so here, the former 

approach was used. Equation 12 may be 
discretised: 

ℎ!" = exp![! !! + !!!"] 
where hij and wij are the values of h(ti) and w(ti) 
on the jth! simulation for the ith time step. To 
match survival probabilities, Equations 10 and 
12 are combined such that: 

 

1
! exp − ℎ!"!"

!

!!!
= exp −!!!!

1 − !
!

!

!!!

%

1
! exp − exp ! !! + !!!" Δ! !

!

!!!
= exp −!!!!

1 − ! !

!

!!!

 

(14) 

for a total of m simulation trials and k time 
steps. 

The data required to estimate b effectively 
(the slope of the regression generated from 
Equation 14) were procured from South African 
banks spanning 10 years from January 2003 to 
January 2013. Combining Equations 10 and 
13, the percentage change in spreads may be 

used as a proxy for percentage changes in 
hazard rates. i.e. Δs/s%≈%Δh/h. Credit spreads as 
well as associated change in portfolio value, 
Δ! were assembled for different counter-
parties of various credit rating grades, and for 
differing contract maturities. Linear regression 
of these quantities is shown in Figure 11 (Δw 
in R000s).  

 
Figure 11 

Regression of Δs/s%on Δw%for South African data from Jan-03 to Jan-13 

 
The slope is an estimate for b in the South 
African market (0.0035 ± 0.0002 with 95 per 
cent confidence). This value of ! is then 
substituted into Equation 14 and ! for each 
simulation trial determined via a Newton-

Raphson technique. Having established a, true 
hazard rates can be backed out from Equation 
14. These are shown in Figure 12 for varying 
maturities and spreads. The recovery rate was 
again assumed to be 55 per cent. 
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Figure 12 
Relationship between spread level maturity of underlying derivative and hazard rates.  

As before, the outcome depends heavily on the absolute spread level 

 
 
As expected, when spreads are high, hazard rates 
increase exponentially for longer matureties, as 

shown in Figure 13. 

 
Figure 13 

Relationship between hazard rates and maturity for various average spreads 

 
 

5 
Conclusions 

A step-by-step guide for measuring CVA has 
been established for a simple OTC interest rate 
derivative. Implementation of CVA and its 
associated sensitivity measures for a portfolio 
of derivative instruments is considerably more 
complex. Much of this complexity is, however, 
computational rather than analytical so success- 
ful execution involves more computing time 
rather than calculation difficulties.  

CVA risk, which arises from changes in 
both counterparty credit spreads and market 
variables that affect the no-default value of 
derivative transactions, was also explored in 
detail. CVA is a complex derivative, so it is 
difficult to estimate the effects of these 
changes on CVA without a robust mathe-
matical model. High average spreads manifest 
in times of high market volatility, or in 
counterparties of poor credit quality, affect 
CVA risk in counterintuitive (and potentially 
dangerous) ways. These high spread levels 
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have been observed in South Africa and, 
although relatively rare, are not impossible. 
Although there may be an economic justify-
cation for the behaviour of CVA when spreads 
are high, care must be taken not to install 
complex models blindly without understanding 
model outputs while considerably more testing 
is required before market implementation.  

It has been demonstrated that a relationship 
between hazard rates and other observable 
variables may be modelled and that these 

models are simpler, computationally faster, 
and easier to back test than more complex 
models that have appeared in the literature to 
date. The model proposed by Hull & White 
(2012) has been used to calibrate South 
African data in stressed and unstressed market 
conditions. Further research is needed to 
determine which variables work best and to 
determine the appropriate functional form for 
the relationship. 

 
Endnotes 

1 Several banks consider these Basel III proposals to be inadequate and have developed sophisticated, internal models for 
managing both types of risk (Hull & White, 2012). 

2 The Merton model assesses credit risk of a company by characterising the company’s equity as a call option on its assets. 
Put-call parity is then used to price the value of the put and this is treated as an analogous representation of the company's 
credit risk (Hull et al., 2004)   

3 The Johannesburg Securities Exchange implemented a domestic CCP at the end of 2013 (Wood, 2013). 
4 is assumption is true when a payment is made at the end of the fixing period – similar to FRNs. 
5 For senior unsecured claims, the LGD is 45 per cent (BCBS, 2006) leaving a recovery rate of 55 per cent. 
6 99.9 per cent under Basel II rules. 
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