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A country’s level of exchange risk is closely linked to its financial stability, on a macro-economic scale. 
South African exchange rates, in particular, have a significant impact on imports, inflation, consumer prices 
and monetary policies. Consequently, it is imperative for economists and investors to assess accurately the 
associated exchange risks. Exchange rates, like most financial time series, are leptokurtic and contradict 
the classical Gaussian assumption. We therefore introduce subclasses of the generalised hyperbolic 
distribution as alternative models and contrast these with the normal distribution. We conclude that the 
variance-gamma model is the most robust for describing the log-returns of daily USD/ZAR exchange rates 
and their related Value-at-Risk (VaR) estimates. The model selection methodologies utilised in our analyses 
include the robust Kolmogorov-Smirnov test and the Akaike information criterion. Backtesting on the 
adequacy of VaR estimates is also performed using the Kupiec likelihood ratio test. 
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1 Introduction 
“Exchange rate” can be defined as the value of a country’s currency expressed in terms of another 
country’s currency. The volatility and performance of a country’s exchange rates are strongly 
related to its financial stability on a macro-economic scale. For example, Samson (2013) has 
observed that exchange rates have a significant impact on asset prices and firm values. Hence the 
focus on exchange rates has heightened in the wake of the recent financial crisis. In South African 
contexts, Aron, Farrell, Muellbauer and Sinclair (2014b) have shown that South African exchange 
rates are closely linked to import prices, inflation effects and market responses on monetary 
policies. Aron, Creamer, Muellbauer and Rankin (2014a) have also revealed that exchange risk is 
highly influential in South African consumer prices. 

As a result, an accurate evaluation of risks associated with exchange rates is imperative for 
economists and investors. A common tool for risk assessments of financial variables, such as 
exchange rates, is the Value-at-Risk (VaR) measure. Some recent studies on the valuation of VaR 
for exchange rates include Zhou, Zhang and Chen (2013) and Batten, Kinateder and Wagner 
(2014). 

The normality assumption of financial data was long denied by analysts such as Benoit 
Mandelbrot and Eugene F. Fama. Mandelbrot (1963) has shown that returns data display heavier 
tails than Pareto and Gaussian distributions. Similarly, Fama (1965) was able to show that the 
empirical distribution of daily prices on the Dow-Jones Industrial Average was more peaked in the 
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centre, and had heavier tails, than the normal distribution. He further suggested the use of stable 
distributions. However, these distributions presented too heavy a tail to fit financial returns. 

In the last two decades, a wide variety of econometric models have been suggested by 
researchers. For example, Hansen (1994) and Azzalini and Capitanio (2003), amongst other 
authors, proposed generalised skew t-type distributions for financial modelling. However, these 
models do not handle substantial skewness. 

Barndorff-Nielsen (1977) introduced a family of continuous distributions, named the 
generalised hyperbolic distributions (GHDs), in which the logarithm of its probability density 
function is a hyperbola. Its first application was in the modelling of grain size distribution of 
windblown sand. These distributions proved to fit financial returns more adequately when 
compared to other distributions like the normal and student t distributions. For example, Eberlein 
and Keller (1995), using a data set consisting of daily prices of the 30 DAX over a period of three 
years, were able to show that GHDs presented the best fit to model data with a high frequency. 
Similar studies were carried out by Bibby and Sørensen (1996) and Prause (1999). Huang, 
Chinhamu, Huang and Hammujuddy (2014) also applied GHDs to model the South African 
Mining Index and to estimate its corresponding VaR values. 

Other articles have also dealt with the application of GHDs to model exchange rates. For 
example, Aas and Haff (2006) showed that the logarithmic returns of the NOW/EUR (NOW is the 
Norwegian Krone) exchange rate has a heavier right tail than a left one, with the latter behaving 
more like the Gaussian distribution. Hence they proposed the use of generalised hyperbolic (GH) 
skew Student’s t distribution and observed that it provides a better fit than the normal-inverse 
Gaussian distribution and the skew t distribution proposed by Azzalini and Capitanio (2003). 
Elsewhere, Fajardo, Farias and Ornelas (2005) used GHDs to model the USD/BRL (Brazilian 
Real) exchange rate and this produced more accurate VaR measurements than traditional 
approaches. 

Another recent work on exchange rates and GHDs was carried out by Jowaheer and 
Ameerudden (2012). This research was mainly concerned with describing how the Mauritian 
rupee (MUR) varies along with the US dollar (USD) and the Indian rupee (INR), as they both play 
important roles in the Mauritian economy in terms of imports and exports. It is thus essential to 
model these exchange rates accurately.  Jowaheer and Ameerudden found that the marginal 
distributions of MUR/USD and MUR/INR exchange rates were asymmetric and fat-tailed, 
following the hyperbolic distribution. 

The various studies discussed above show that certain subclasses of GHDs provide suitable 
models for various financial data (in particular, certain exchange rates). However, limited studies 
have focused on identifying a suitable distribution and an adequate VaR model for South African 
exchange rates. Furthermore, it is not certain that previous studies would apply to the South 
African context. For instance, Vee, Gonpot and Sookia (2012) have suggested that the best models 
for different financial data may differ. Wong and Li (2010) have also shown that stock returns and 
exchange rates are negatively correlated, and that this correlation varies over different time 
periods. 

The main contributions made by this article are as follows: firstly, we identify the variance-
gamma (VG) distribution as the most suitable subclass of GHDs for describing daily USD/ZAR 
(ZAR is the South African rand) exchange rate log-returns, using statistical methods such as the 
robust Kolmogorov-Smirnov goodness-of-fit test and the Akaike information criterion. Secondly, 
we examine VG’s adequacy in VaR estimation for the same data, relative to other GHD 
subclasses. Although VG has been utilised for modelling exchange rates (such as Tichý, 2006), it 
has been largely overlooked by the aforementioned studies. Moreover, it has not been used for 
VaR estimation in exchange rates and subsequently compared to other GHD subclasses. Thirdly, 
we discuss the rise of VG for modelling risks in the USD/ZAR exchange rate, as compared to 
models identified for other exchange rates. 
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The rest of the article is arranged as follows: in Section 2, we introduce the GHD family and its 

subclasses;  Section 3 describes the statistical methodologies utilised for comparisons between 
different models; and Section 4 introduces the data and presents the corresponding descriptive 
analyses. Empirical results of the various statistical tests for model selection are presented and 
discussed in Section 5. Section 6 comprises the conclusion and offers suggestions for further 
research. 

2 Generalised hyperbolic distributions 
The generalised hyperbolic distribution is a five parameter continuous distribution. This 
distribution, together with its subclasses (namely, hyperbolic, normal-inverse Gaussian, VG and 
GH skew Student’s t distributions), plays a significant role in the modelling of financial variables 
as it enables researchers to model data from a wide variety of fields such as economics and finance. 
This is mainly due to the fact that GHDs cater for asymmetry, heavy and semi-heavy tailed data. 

If a random variable X follows the generalised hyperbolic distribution, we write 
X ∼ gh (x; λ, α, β, δ, µ) 

where µ is a location parameter, δ serves as a scaling factor, α determines the shape, β determines 
the skewness, and λ influences the kurtosis of the generalised hyperbolic distribution (Necula, 
2009). Its probability density function is given by 

         !ℎ(!; !,!,!, !, !) = !!!!! !/!(!!! !!! !)(!!!/!)/!!!!!/! ! !!!(!!!)!  !"# ! !!!
!! !!!!/! !! !! ! !!!!!

 

where Kj is the modified Bessel function of the third kind, with order j. It should also be noted that 
the domain of the parameters must satisfy the following conditions 

δ > 0, |β| < α , if λ = 0 
δ > 0, |β| ≤ α , if λ < 0 
δ ≥ 0, |β| < α , if λ > 0 

The mean and variance of this distribution (Prause, 1999) are given by  

          ! ! = ! + !"
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where ! = ! !! − !!.  

2.1 The normal inverse-Gaussian distribution (NIG) 
This is a subclass of the generalised hyperbolic distribution obtained when the parameter λ = −0.5. 
Thus, a random variable X is said to follow a normal-inverse Gaussian distribution, denoted  
X ∼ nig (x; α, β, δ, µ), if its probability density function is given by 

   !"# !;!,!, !, ! = !"
! !

! !!!!!!! !!! !! ! !!!(!!!)!

!!!(!!!)!  

with x, µ ∈ ℝ and δ > 0, |β| ≤ α. Also, for this distribution, 

                             ! ! = ! + !"
!!!!!, !"# ! = !!!

(!!!!!)!\!. 
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2.2 The hyperbolic distribution (HYP) 
This is the subclass of GHDs obtained when the parameter λ = 1. Thus a random variable, X, is 
said to follow a hyperbolic distribution, denoted X ∼ hyp (x; α, β, δ, µ), if its probability density 
function is given by 

              ℎ!" !;!,!, !, ! = !!!!!
!!"!!(! !!!!!) exp −! !! + (! − !)! + ! ! − !  

with x, µ ∈ ℝ. It should also be noted that different re-parameterisations of HYP exist. A particular 
case is given by 

! = (1 + ! !! − !!)!!/!,  ! = !"
! ,  ! = ! !! − !!,  ! = !

! . 

This parameterisation is very important in statistical analyses as it helps to determine the tail 
behaviour of the data. For instance, we have the following tail behaviours depending on the value 
of the parameter χ: if χ < 0, the left tail is heavier than the right tail, if χ < 0, the distribution is 
symmetric, and if χ < 0, the right tail is heavier than the left tail. 

2.3 The variance-gamma distribution (VG) 
The third member of the GHD is obtained when the parameter δ → 0. This subclass is called the 
VG distribution. A random variable following this distribution is denoted as X ∼ vg (x; λ, α, β, µ), 
and has probability density function defined by 

!" !; !,!,!, ! = !!!
!! ! (!!)!!!/! ! − !

!!!/!!!!!/! ! ! − ! exp(!(! − !)), 

where x ∈ ℝ, Γ(λ) is the gamma function and γ 2 = α 2 − β 2. The parameter domain is also given by 
λ > 0 and α > |β|. The mean and variance of this distribution are given by 

 ! ! = ! + !!"
!! , !"# ! = !!

!! 1 + 2 !
!

!
. 

2.4 The generalised hyperbolic skew student’s t distribution (GHST) 
Finally, we have the GH skew Student’s t distribution, which is the last subclass of the GHD
family, and it is obtained as a limiting distribution when the parameters ! = − !

! and α → |β|. The
probability density function of this distribution is given by 

!ℎ!! ! =
!
!!!
! !! !

!!!
! !(!!!)/! !! !!!(!!!)!

! !
! ! !!!(!!!)!

(!!!)/! e ! !!!    , ! ≠ 0

! !!!
!
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!(!!!)/!
                          , ! = 0

  

where we have used the fact that  !! ! = !/2! exp −! . The mean and the variance of this 
distribution are given by 

! ! = ! + !!!
!!! , !"# ! = !!!!!

!!! (!!!) +
!!
!!!  

This distribution is the only subclass of the GHD with one polynomial and one exponential tail, 
thus enabling them to handle heavy-tailed data well. 

3 Methodology 
To test whether the subclasses of GHDs adequately describe our USD/ZAR exchange rate returns 
and to identify an optimal model, we utilise several statistical tests for model checking and 
selection. These are summarised below. 
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3.1 Robust Kolmogorov-Smirnov goodness-of-fit test 
This test is closely related to the Anderson-Darling and Kolmogorov-Smirnov (K-S) tests for 
goodness-of-fit. But in this case, a “bootstrapping” procedure is performed. Our main reason for 
employing this test is because our sample size is large and the data contains many ties (i.e., 
repeated observations). The robust K-S test is useful in cases where the hypothesised distribution 
is not fully continuous (or discrete). More importantly, it also caters for data that contains ties, 
whereas the standard K-S test does not allow for ties in the data. The idea behind this test is to 
enlarge the region of acceptance hypothesis beyond that of the hypothesised distribution H(x), 
defined over some closed interval Z ⊂ ℝ. It should also be noted that this test is a two-sample test. 
The robust K-S test relies on the class of distributions defined by 

K = {G ∈ P (Z) : H − (x) ≤ G (x) ≤ H + (x), ∀ x ∈ Z}, 

where P(Z) is the space of all probability distribution functions on Z, and H+ and H– are 
continuous probability distribution functions with nominal distribution H ∈ K. The hypotheses are, 
for some G ∈ K, 

H0 : D ∼ i.i.d. (G)   VS   H1 : D ∼ i.i.d. (G), 

where D represent our data x1, x2, x3, . . . , xn. The test statistic is given by 

                                                                         ! = min!∈! sup!  |!(!) − !(!)|,  

where S(x) denotes the empirical distribution of D, and is compared with some threshold value t. 
Thus, the null hypothesis, H0, is rejected if T > t (Unnikrishnan, Meyn & Veeravalli, 2010). 

3.2 Akaike information criterion (AIC) 
Selecting the optimal model (i.e., the model that most accurately fits the data with minimum error) 
from a collection of models is a very important aspect in statistical analyses. Given that our 
analysis is principally based on fitting GHDs to data and comparing the fit of these distributions 
amongst one another for the optimal model, it is necessary for us to look at a criterion for model 
selection. In our case, we shall utilise the Akaike information criterion (AIC). This criterion 
suggests that the best possible model is the one with the smallest AIC value, with AIC given by 

AIC = −2 ln (L) + 2k 

where k is the number of parameters in the model and L is the likelihood of the model. 

3.3 Value-at-risk and backtesting 
Value-at-Risk (VaR) is defined as a threshold value such that the probability of the market loss on 
a portfolio, over a given time horizon, exceeds this threshold value is equal to a pre-specified 
level. It is widely used as a risk measure and utilised for assessments of extreme behaviour in 
financial data (Jorion, 2006). More importantly, it can be used to measure a distribution’s level of 
adequacy for tail fits, i.e. VaR backtesting. 

It should be noted that financial institutions are more prone to failure due to the shortage of 
capital resulting from underestimation of VaR. Furthermore, Beling, Overstreet and Rajaratnam 
(2010) have shown that, under the Basel framework, there is a negative profit impact due to the 
misestimation of VaR in either direction. Hence, an adequate model for assessing the risk of a 
return series should not underestimate or overestimate VaR. 

In the analysis of maximum loss for a portfolio, the Kupiec likelihood ratio test (Kupiec, 1995) 
is the most commonly used backtesting procedure. The Kupiec test relies on unconditional 
coverage, which means that it verifies whether the reported VaR estimate is violated significantly 
more, or a fewer number of times, compared to the level of significance, α. In this case, if the ratio 
of the number of violations is not significantly different from the level of significance, then the 
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overall adequacy of the model is verified. Thus, under the null hypothesis that the ratio of the 
expected number of violations is α, the test statistic for the Kupiec test is given by 

    2 ln !!
!

!!
1 − !!

!
!!!!

− ln −!!! 1 − ! !!!!  

where N is the sample size and rα is the number of times the returns deflect below (for long 
position) or above (for short position) the estimated VaR value, at α level of significance. This test 
statistic asymptotically follows a chi-square distribution with one degree of freedom. 

4. Data descriptives 
As mentioned earlier, the data we consider in this research is the USD/ZAR exchange rate from 
the National Reserve Bank of South Africa. The data consists of the daily exchange rate from 
04/01/1994 to 12/06/2015 and the values were collected daily at 10:30. No averaging or 
corrections were made to the data. In the following section, we introduce the data set and its 
descriptive analyses. 

4.1 Time series plot 
The time series of the daily USD/ZAR exchange rate is shown in Figure 1. It should be noted that 
the data consists of the weighted average of the banks’ daily rates at approximately 10:30. Weights 
are based on the banks’ foreign exchange transactions. 

Figure 1 
Time series plot of daily USD/ZAR exchange rate for the period 04/01/1994 to 12/06/2015 

 

The first thing to note about this graph is that the daily exchange rate increased from about R3.40 
per USD around 1994 to about R12.50 per USD around 2002, which is the highest it has ever 
reached since 1994. But as time went on, this value began to change haphazardly upwards and 
downwards to about R12.00 per USD in 2015. Thus the plot shows some irregular movements 
characterised by upward and downward trends. This suggests that the series is non-stationary. 
There is a very high degree of variability which is a common characteristic of financial data. 

4.2 Descriptive statistics of log-returns of the daily USD/ZAR exchange rate 
To transform the data to a stationary sequence, it is common practice to consider the log-return 
series (i.e., taking the first backward differences of the logarithm of the data values). Suppose our 
exchange rate data is given by the series {p1, p2, p3, . . . , pn}, where !! represents the exchange 
rate for day t. The log-returns (or just simply “returns”), at day t, of the series is given by 

Rt = ln (pt) − ln (pt-1). 
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With this transformation, we obtain the time series plot and the corresponding histogram of the 
returns as shown below. 

From the graphs below, we observe that the series hovers around zero, suggesting that the series 
is now stationary about the mean. However, we see some heteroscedastic patterns and volatility 
clustering, which characterise financial returns (Tsay, 2010). The histogram shows the leptokurtic 
behaviour of our log-returns as we have more returns at the centre than the tail parts, with a high 
peak around the mean, and fat tails. 

Figure 2 
Time series plot (left) and histogram (right) of daily USD/ZAR exchange rate log-returns 

  

The leptokurtic behaviour is confirmed by Table 1 below, in which the kurtosis is as high as 
9.423497. This also suggests that the log-return series is not Gaussian (as the kurtosis for normal 
distribution is 3). The Q-Q plot below also confirms this claim of non-normality; as normal 
distributed returns would imply that the returns lie in a straight line. Rather, our graph is S-shaped, 
which is due to the presence of fat tails, hence the need for heavy-tailed distributions such as the 
GHDs. 

Table 1 
Descriptive statistics for daily USD/ZAR exchange rate log-returns 

Minimum returns -0740300 
Standard deviation 0.01015726 
Mean returns 0.0002417 
Skewness 0.6060689 
Kurtosis 9.423497 
Jarque-Bera statistic (p-value) 9548.103 (<0.00001) 
Maximum returns 0.1055000 
Number of observations 5357 

Figure 3 
Q-Q plot on daily log-returns of the USD/ZAR exchange rate 
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A formal test concerning normality is the Jarque-Bera normality test (also presented in Table 1). In 
our case, the test statistic has a value of 9548.103, with a p-value less than 0.00001, meaning that 
our null hypothesis of normality is rejected. The mean return of 0.0002417 also suggests a general 
increase in exchange rate since 1994. The skewness of 0.6060689 shows that the return series is 
not symmetric, as is commonly observed in financial data (Aas & Haff, 2006). 

Figure 4 below shows the ACF plot of log-returns and that of squared log-returns for the 
USD/ZAR exchange rate. 

Figure 4 
ACF plots of log-returns (left) and squared log-returns (right) of the USD/ZAR exchange rate  

 
It is evident from the ACF plot of log-returns that our data are uncorrelated (all spikes are 
insignificant). However, the ACF plot of the squared returns shows some significant spikes, which 
suggests that the squared returns are autocorrelated. This is a common feature that characterises 
financial returns. These observations also confirm that the log-return series is stationary. 

4.3 Test for stationarity 
We perform two formal tests to confirm the stationarity of our return series; namely, the 
Augmented Dickey-Fuller (ADF) and the Philips-Perron (PP) unit root tests. Table 2 below 
summarises the results of both tests. 

Table 2 
Unit root tests for stationarity of daily USD/ZAR exchange rate log-returns 

Unit root test Test statistic p-value 

ADF -16.9259 <0.0001 

PP -75.8499 <0.0001 

Under the null hypothesis of log-returns having a unit root, both tests show that this hypothesis is 
rejected at all levels of significance. This is indicated by the low p-values (both less than 0.0001). 
Hence our return series is stationary and we can proceed with further time series analyses. 

5 Empirical results and model selection 
This section focuses on the parameter estimation and comparison of fits for the subclasses of the 
GHDs and the normal distribution, on daily log-returns of the USD/ZAR exchange rate. Further, 
various tests are performed to select an optimal model for the USD/ZAR exchange rate’s daily 
log-returns. We use the first 15 years of daily returns from 05/01/1994 to 02/01/2009 (3747 
observations) for model training and in-sample testing, while the daily returns from 05/01/2009 to 
12/06/2015 (1610 observations) are retained for out-of-sample testing. 

5.1 Parameters estimation for the GHDs 
We estimate the parameters of the GHDs using maximum likelihood estimation (MLE). The table 
below illustrates the MLE parameter estimates for different subclasses of the GHDs. 
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Employing the estimates below, we proceed to analyse the goodness-of-fit for these GHDs and 

compare them to the normality assumption. 

Table 3 
Parameter estimates of the GHDs for the daily USD/ZAR exchange rate 

Parameter α δ β µ Λ 
HYP 150.4932 2.706224e-06 7.105438 -0.0003517306 1 

NIG 48.95287 0.005380366 4.664971 -0.000241053 -0.5 

GHST  3.731506 0.007966675 3.731506 -0.0002279307 -1.095478 

VG 116.9453 0 -1.027145 5.600089e-12 0.681562 

5.2 Comparison between GHDs and normal distribution 
We begin with the comparison between the hyperbolic and normal distributions. 

Figure 5 
Histogram (left), log density plot (middle), Q-Q plot (right) for the hyperbolic distribution. 

 
Figure 5 presents the various graphical analyses for the hyperbolic subclass. The histogram shows 
that the skewness of the hyperbolic distribution makes it more appropriate for fitting the daily log-
returns, relative to the normal distribution. This observation is also made clearer by the log density 
plot, which is very important in the analysis of tail behaviour. In this case, it is evident that a 
heavy-tailed distribution such as the hyperbolic (with semi-heavy tail properties) is needed, as it 
provides a better fit compared to the normal distribution. This is further confirmed by the Q-Q plot, 
where it is evidenced that the hyperbolic distribution portrays a closer description of the data, 
especially at the tails. 

The graphs in Figure 6 illustrate the goodness-of-fit for NIG. Firstly, the histogram shows that 
NIG provides a better representation of the leptokurtic behaviour in daily log-returns of the 
USD/ZAR exchange rate. Secondly, the log density plot shows that the NIG distribution is more 
appropriate in fitting the tails, especially the upper tail of the log-returns and this is also  finally, 
confirmed by the Q-Q plot. Thus once more, we obtain a better fit with NIG as compared to the 
normal distribution. 

In a similar way to the above, we compare the fit of the normal distribution to that of GH skew 
Student’s t distribution. The resultant graphical analyses are presented in Figure 7. 
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Figure 6 
Histogram (left), log density plot (middle), Q-Q plot (right) for the NIG distribution 

 
Figure 7 

Histogram (left), log density plot (middle), Q-Q plot (right) for the GH skew Student’s t distribution. 

 
Relative to other members of GHDs, the plots in Figure 7 suggest that GHST provides the worst 
fit. However, relative to the normal distribution, it still shows a better depiction of our returns data, 
especially for the lower tail. 

Finally, we compare the fit of the variance-gamma distribution to that of the normal 
distribution. In a similar way to the previous findings, Figure 8 shows that VG provides a better fit 
compared to the normal distribution as can be seen from the histogram and log density plot, in 
which the VG distribution fits the tails more accurately. Furthermore, the Q-Q plot shows that the 
VG distribution provides a very good fit to the lower tail. 
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Figure 8 

Histogram (left), log density plot (middle), Q-Q plot (right) of returns using the variance-gamma distribution. 

 
In general, we have seen that the GHDs provide better fits for the daily USD/ZAR exchange rate 
log-returns than the classical Gaussian conjecture for financial data. The normal distribution 
deviates from the data most strikingly at the extreme tails, whereas the GHDs provide a more 
robust depiction of the tails. Concurrently, GHDs also cater for the skewness of our data set. 

5.3 Goodness-of-fit test and model selection 
As discussed earlier, the presence of ties and a large sample size motivates our use of the robust 
Kolmogorov-Smirnov (K-S) test. The table summarising the results of this test follows in the 
sequel. 

Table 4 
Robust K-S goodness-of-fit test 

Distribution Robust K-S statistic p-value 

HYP 0.0351 0.2853 

NIG 0.0325 0.3761 

GHST 0.0337 0.1042 

VG 0.0229 0.8002 

Through the “bootstrapping” procedure of the robust K-S test, we obtain the test statistics and p-
values of the four GHD subclasses. Evidently, all subclasses demonstrate a high p-value, meaning 
we cannot reject the null hypothesis that the data follow these GHDs at all levels of significance. 
Furthermore, the robust K-S test shows that VG is the most robust of the four subclasses, with the 
lowest robust K-S distance and the highest p-value. Further comparisons may be drawn from a 
combined Q-Q plot of the subclasses against the data quantiles (see Figure 9). 

Clearly, the combined Q-Q plot suggests that NIG provides the best fit for the upper tail, while 
VG provides the best fit for the lower one. We may also observe that the GHST is, relatively 
speaking, the worst fit for both ends. 
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Figure 9 
Combined Q-Q plot of GHDs against empirical quantiles 

 
We now proceed to verify the selection of an optimal model using Akaike information criterion 
and log-likelihood values. These values will provide some insight into which subclass of GHDs is 
most robust for modelling our daily returns in general. 

Table 5 
AIC and log-likelihood of the GHDs 

Model AIC Log-likelihood 

HYP -24862.86 12435.43 

NIG -24884.49 12446.25 

GHST -24813.51 12410.76 

VG  -24945.34 12476.67 

From Table 5, we observe that VG has the smallest AIC value of -24945.34 and the largest log-
likelihood value of 12476.67. This means that the VG distribution provides the best fit compared 
to the other members. However, the differences between these AIC (and log-likelihood) values are 
diminutive. This is possibly as a result of all subclasses providing good depiction for the large bulk 
of data at the centre while their minor dissimilarities result from the varying tail fits of the 
distributions. 

In financial terms, these tail behaviours relate to extreme risks. This has a major impact on the 
adequacy of capitalisation (e.g., for financial institutes) against such risks. Hence, to focus on 
these extreme tail fits, we utilise the Kupiec likelihood ratio test for comparing the number of 
violations to the corresponding Value-at-Risk level. We examine results from both in-sample 
backtests and out-of-sample tests. First, we take a look at the in-sample backtests. 

Table 6 
VaR estimates for the daily USD/ZAR exchange rate log-returns at different levels of  

significance and for different models 
Distribution 0.1% 0.5% 1% 99% 99.5% 99.9% 

Empirical -0.04610111 -0.03087547 -0.0269487 0.0330473 0.03867179 0.0617457 

Normal -0.03140708 -0.02613364 -0.02357605 0.02412146 0.02667904 0.03195249 

HYP  -0.03950493 -0.02927437 -0.02487938 0.02723165 0.03208536 0.0433102 

NIG  -0.05687757 -0.03706043 -0.02944542 0.03371311 0.04281601 0.06662034 

GHST  -0.0762168 -0.04067853 -0.03032214 0.03704315 0.05348944 0.1322189 

VG  -0.04785376 -0.03467617 -0.02907374 0.0345461 0.04025359 0.05352086 

Table 6 presents VaR estimates for different models at different levels of significance. In 
particular, the VaR values are estimated at 0.1 per cent, 0.5 per cent, 1 per cent, 99 per cent, 99.5 
per cent and 99.9 per cent levels of significance. 
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We observe that the VaR estimates from subclasses of GHDs are closer to those of the 

empirical distribution, compared to those of the normal distribution at almost all VaR levels. This 
was expected as we saw that GHDs provided a better fit compared to the normal distribution. In 
fact, the normal distribution underestimated VaR. On the other hand, GHST provided considerable 
overestimates for the upper tail, relative to the other models. 

Table 7 
Actual and expected (in brackets) number of violations of VaR estimates for each model  

from in-sample backtesting 
Distribution 0.1% 0.5% 1% 99% 99.5% 99.9% 

Normal 15(3) 44(18) 57(37) 88(37) 71(18) 41(3) 

HYP  9(3) 27(18) 48(37) 67(37) 41(18) 14(3) 

NIG 1(3) 12(18) 26(37) 33(37) 15(18) 3(3) 

GHST 0(3) 8(18) 22(37) 23(37) 6(18) 0(3) 

VG 2(3) 13(18) 28(37) 31(37) 18(18) 6(3) 

Table 7 represents the actual number of violations of VaR, as well as the expected number in 
brackets, at different VaR levels. These are utilised to obtain results for the Kupiec test. The p-
values of the Kupiec test are summarised in Table 8 below. 

Table 8 
Kupiec test p-values for each distribution from in-sample backtesting 

Distribution 0.1% 0.5% 1% 99% 99.5% 99.9% 

Normal <0.0001 <0.0001 0.0029 <0.0001 <0.0001 <0.0001 

HYP  0.0216 0.0726 0.0975 <0.0001 <0.0001 <0.0001 

NIG 0.0911 0.0948 0.0463 0.4538 0.3701 0.6891 

GHST 0.0062 0.0050 0.0059 0.0105 0.0006 0.0062 

VG 0.3213 0.1597 0.1036 0.2735 0.8639 0.2846 

Table 8 above confirms the inaccuracy of the normal distribution for VaR estimation, where it is 
rejected by the Kupiec test at all VaR levels. This was anticipated, as it was earlier seen that the 
normal distribution provided an inadequate depiction of our data set. An interesting observation 
from the table is that NIG has high p-values at the upper tail (at 99 per cent, 99.5 per cent and 99.9 
per cent) relative to the other subclasses of GHD. However, the lower tail is best fitted with VG, 
since it has the highest p-values at levels 0.1 per cent, 0.5 per cent and 1 per cent.  

Overall, at the 5 per cent level of test significance, GHST is rejected at all VaR levels, HYP is 
rejected at four out of six VaR levels and NIG is rejected once. VG is the only model not rejected 
at any VaR levels at the 5 per cent level of test significance. Hence, we may select VG as the 
optimal model for the daily USD/ZAR exchange rate log-returns. Similarly, VG is the only model 
not rejected at all VaR levels at the 10 per cent level of test significance. In fact, at the latter level 
of test significance, all other models are rejected for losses, while NIG is the only other model not 
rejected for positive returns. 

For out-of-sample testing, we forecast one-day-ahead VaR estimates by recalibrating the model 
parameters on a daily basis, using moving windows of the preceding 500 daily returns. The daily 
VaR estimates were calculated for the period from 05/01/2009 to 12/06/2015 (1610 observations) 
and compared with the corresponding realised daily returns. The resulting record of VaR 
violations is summarised in Table 9 and the corresponding Kupiec test p-values are presented in 
Table 10. 
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Table 9 
Actual and expected (in brackets) number of violations of VaR estimates for each model from  

one-day-ahead out-of-sample testing 
Distribution 0.1% 0.5% 1% 99% 99.5% 99.9% 

Normal 1(1) 6(8) 9(16) 18(16) 11(8) 6(1) 

HYP  1(1) 7(8) 11(16) 9(16) 7(8) 4(1) 

NIG 1(1) 7(8) 11(16) 14(16) 12(8) 8(1) 

GHST 1(1) 7(8) 11(16) 9(16) 7(8) 1(1) 

VG 1(1) 7(8) 11(16) 11(16) 9(8) 4(1) 

Table 10 
Kupiec test p-values for each distribution from one-day-ahead out-of-sample testing 

Distribution 0.1% 0.5% 1% 99% 99.5% 99.9% 

Normal 0.6048 0.4480 0.0524 0.6404 0.3236 0.0081 

HYP  0.6048 0.7043 0.1754 0.0524 0.7043 0.1136 

NIG 0.6048 0.7043 0.1754 0.5905 0.1934 0.0003 

GHST 0.6048 0.7043 0.1754 0.0524 0.7043 0.6048 

VG 0.6048 0.7043 0.1754 0.1754 0.7418 0.1136 

Due to the lack of data, as is common for out-of-sample testing, the results do not contrast as much 
as in the in-sample tests. In particular, no significant differences between the GHDs were observed 
for the lower tail, while Normal and HYP were the only models rejected once at the 5 per cent 
level of test significance. However, at the 10 per cent level of test significance, we again see that 
VG is the only model not rejected at all VaR levels. This further confirms VG as the most robust 
model for VaR estimation. 
When comparing results from other research studies, we may also observe properties that are 
potentially distinctive to the USD/ZAR exchange rate. In particular, Aas and Haff (2006) have 
shown that VaR in the NOW/EUR exchange rate is well depicted by GHST, due to its dissimilar, 
heavy and semi-heavy, tails. However, in our analysis, GHST often produced overestimates for 
VaR in USD/ZAR and VG, with semi-heavy tails, producing more robust estimates. We suggest 
that this difference may be partially due to South Africa’s prudent fiscal and monetary policies, 
meaning that the South African capital markets were not as largely affected by global financial 
crises as its international counterparts. At the same time, the USD/ZAR exchange rate is also 
correlated to the US market, which is one of the most commonly followed developed markets in 
the world. These resulted in the USD/ZAR exchange rate being uniquely different from other 
financial data, in that it is simultaneously affected by two vastly different markets.  

6 Conclusion and further research 
In this research we have provided assessments of the adequacy of generalised hyperbolic 
distributions (GHDs) for modelling the USD/ZAR exchange rate. In particular, our primary 
objective was to identify an optimal GHD subclass for depicting risks associated with the 
USD/ZAR exchange rate. Such a model should also capture stylised facts in financial data, such as 
skewness, asymmetry and heavy tails. Through various statistical analyses, we found that the 
generalised hyperbolic distributions provide better fits to the daily USD/ZAR exchange rate 
returns, than the classical Gaussian assumption. The robust Kolmogorov-Smirnov test and the 
Akaike information criterion both selected the variance-gamma distribution (VG) as the optimal 
model for the overall depiction of the daily USD/ZAR exchange rate returns. Furthermore, the 
overall Value-at-Risk (VaR) estimates produced from VG are the most robust, as suggested by the 
Kupiec likelihood ratio test, for both in-sample backtesting and out-of-sample tests. That is, VG 
does not significantly underestimate, nor does it overestimate, the expected number of VaR 
violations at all VaR levels under study. We also suggest that the distinct rise of VG for VaR 



SAJEMS NS 18 (2015) No 4:551-566 
 

565 
 

 
estimation in the USD/ZAR exchange rate may be largely due to the fact that USD/ZAR is jointly 
correlated with two very different markets, the developed US market and the developing South 
African market, with vastly different structures and global focus. 

Given that VG is the optimal GHD subclass to depict daily USD/ZAR exchange rate returns, 
further work could draw comparisons with the well-celebrated extreme value models, or 
incorporate VG into the framework of unconditional variance GARCH-based VaR models. 
Furthermore, multivariate GHDs and copula may be applied to study the dependencies among 
South African exchange rates and other financial variables, such as share prices, inflation rate and 
consumer indices. 

R, Excel and SPSS were used to produce results of the various statistical tests and figures 
presented in this article. 
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